The Largest Mesosaurs Ever Known: Evidence from Scanty Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description
2.2. Methods: The Morphometric Approach
Data Presentation
2.3. Isometric Growth in Mesosaurs and Its Implications in Determining the Average Size of Mesosaurs
- (i)
- Almost every measurement in [27] was exclusively compared to the average size of dorsal vertebrae (ASDV), with the authors justifying this choice by suggesting that ASDV is a good proxy for determining overall Mesosaurus size [27]. However, this proxy used by [27] is not optimal, given that it was demonstrated that ASDV has been shown to overestimate Mesosaurus length by including only the largest and more variable vertebrae in the Mesosaurus vertebral column [41]. Consequently, most of the allometric relationships found by [27] are inapplicable, as they are based on an inappropriate proxy and cannot reliably estimate Mesosaurus size. Moreover, the allometric relationships studied by these authors are largely tied to this proxy, complicating their interpretation; at most, these findings suggest the existence of allometric relationships specifically with respect to the dorsal region. This does not refute or contradict previous findings.
- (ii)
- (iii)
- Of the 23 relationships analyzed by [27], only 4 are not linked to the ASDV; of these, only one is relevant to the present study: the skull length vs. postorbital length ratio (a measurement in which both research groups found allometry). Given the substantial amount of data collected by these authors, we decided to include their data to recalculate the relationships with greater precision, and the results are presented in Figure 9 and Figure 10 and particularly in Figure 11. Additionally, we analyzed the relationship between orbit size and postorbital length ratio, a parameter previously studied by [15] but not by [27].
2.4. SEM Studies
3. Results
Reevaluation of the Isometric Relationships Found in Mesosaurs by Including Data from Verrière and Fröbisch (2022)
4. Discussion
4.1. The Body Size of Mesosaurs
4.2. Could the Mesosaur Gigantism Be Explained by the Influence of the Paleogeographic Bergmann Rule?
4.3. Body Size of Early Amniotes
4.4. Attritional, Mass Mortality or Both: How the Presence of Very Mature Individuals Can Modify the Models Suggested for Mesosaur Taphonomy and Environments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, R.L. Quantitative aspects of the amphibian-reptilian transition. Forma Funct. 1970, 3, 165–178. [Google Scholar]
- Carroll, R.L. The Origin of Reptiles; Schultze, H.-P., Trueb, L., Eds.; Cornell University Press: Ithaca, NY, USA, 1991; pp. 331–353. [Google Scholar]
- Cope, E.D. The Primary Factors of Organic Evolution; Open Court Publ. Co.: New York, NY, USA, 1896; p. 492. [Google Scholar]
- Polly, P.D.; Alroy, J. Cope’s rule. Science 1998, 282, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Bokma, F.; Godinot, M.; Maridet, O.; Ladevèze, S.; Costeur, L.C.; Solé, F.A.; Gheerbrant, E.; Peigné, S.P.; Jacques, F.; Laurin, M. Testing for Depéret’s Rule (body size increase) in Mammals using Combined Extinct and Extant Data. Syst. Biol. 2016, 65, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Depéret, C.J.J. Les Transformations du Monde Animal; Flammarion: Paris, France, 1907. [Google Scholar]
- Depéret, C.J.J. The Transformations of the Animal World; Kegan Paul, Trench, Trübner & Company, Limited: London, UK, 1909. [Google Scholar]
- Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst. Biol. 2004, 53, 594–622. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst. Zool. 1991, 40, 304–314. [Google Scholar] [CrossRef]
- Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Didier, G.; Chabrol, O.; Laurin, M. Parsimony-based test for identifying changes in evolutionary trends for quantitative characters: Implications for the origin of the amniotic egg. Cladistics 2019, 35, 576–599. [Google Scholar] [CrossRef]
- Brocklehurst, N.; Brink, K.S. Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous. Facets 2017, 2, 68–84. [Google Scholar] [CrossRef]
- Brocklehurst, N.; Ford, D.P.; Benson, R.B.J. Early Origins of Divergent Patterns of Morphological Evolution on the Mammal and Reptile Stem-Lineages. Syst. Biol. 2022, 10, 1195–1209. [Google Scholar] [CrossRef]
- Piñeiro, G.; Núñez Demarco, P.; Meneghel, M.D. The ontogenetic transformation of the mesosaurid tarsus: A contribution to the origin of the primitive amniotic astragalus. PeerJ 2016, 4, e2036. [Google Scholar] [CrossRef] [PubMed]
- Núñez Demarco, P.; Ferigolo, J.; Piñeiro, G. Isometry in mesosaurs: Implications for growth patterns in early amniotes. Acta Palaeontol. Pol. 2022, 67, 509–542. [Google Scholar] [CrossRef]
- Dawson, J.W. On a Terrestrial Mollusk, a Millepede, and new Reptiles, from the Coal Formation of Nova Scotia. Q. J. Geol. Soc. Lond. 1859, 16, 268–277. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J. A history of research at the Joggins Fossil Cliffs of Nova Scotia, Canada, the world’s finest Pennsylvanian section. Proc. Geol. Assoc. 2006, 117, 377–392. [Google Scholar] [CrossRef]
- Godfrey, S.; Holmes, R.B.; Laurin, M. Articulated remains of a Pennsylvanian embolomere (Amphibia: Anthracosauria) from Joggins, Nova Scotia, Canada. J. Vertebr. Paleontol. 1991, 11, 213–219. [Google Scholar] [CrossRef]
- Gervais, P. Description du Mesosaurus tenuidens, reptile fossile de l’Afrique australe. Académie Sci. Lett. Montp. Mémoires Sect. Sci. 1865, 6, 169–175. [Google Scholar]
- Romer, A.S. Aquatic adaptation in reptiles-primary or secondary? Ann. S. Afr. Mus. 1974, 64, 221–230. [Google Scholar]
- Modesto, S.P. Observations on the structure of the Early Permian reptile Stereosternum temidum Cope. Palaeontol. Afr. 1999, 35, 7–19. [Google Scholar]
- Piñeiro, G. Paleofaunas del Pérmico-Eotriásico de Uruguay. Master’s Thesis, PEDECIBA, Universidad de la República, Montevideo, Uruguay, 2002; 208p. [Google Scholar]
- Araújo, D.C. Taxonomia e relações dos Proganosauria da Bacia do Paraná. An. Acad. Bras. Cien. 1977, 48, 91–116. [Google Scholar]
- Oelofsen, B. An Anatomical and Systematic Study of the Family Mesosauridae (Reptilia, Proganosauria) with Special Reference to Its Associated Fauna and Paleoecological Environment in the White-hill Sea. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 1981; pp. 1–163. [Google Scholar]
- Modesto, S.P. The anatomy, relationships, and palaeoecology of Mesosaurus tenuidens and Stereosternum tumidum (Amniota: Mesosauridae) from the Lower Permian of Gondwana, XVIII. Ph.D. Thesis, University of Toronto, Toronto, Canada, 1996; 279p. [Google Scholar]
- Canoville, A.; Laurin, M. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on paleobiological inferences. Biol. J. Linn. Soc. 2010, 100, 384–406. [Google Scholar] [CrossRef]
- Verrière, A.; Fröbisch, J. Ontogenetic, dietary, and environmental shifts in Mesosauridae. PeerJ 2022, 10, e13866. [Google Scholar] [CrossRef]
- MacDougall, M.J.; Verrière, A.; Wintrich, T.; LeBlanc, A.R.; Fernandez, V.; Fröbisch, J. Conflicting evidence for the use of caudal autotomy in mesosaurs. Sci. Rep. 2020, 10, 7184. [Google Scholar] [CrossRef] [PubMed]
- Laurin, M.; Reisz, R.R. A reevaluation of early amniote phylogeny. Zool. J. Linn. Soc. 1995, 113, 165–223. [Google Scholar] [CrossRef]
- Laurin, M.; Piñeiro, G. A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes. Front. Earth Sci. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Laurin, M.; Piñeiro, G. Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes. Front. Earth Sci. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Simões, T.R.; Kammerer, C.F.; Caldwell, M.W.; Pierce, S.E. Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Sci. Adv. 2022, 8, eabq1898. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.; Kluge, A.G.; Rowe, T. The early evolution of the Amniota. In The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds; Benton, M.J., Ed.; Clarendon Press: Oxford, UK, 1988; pp. 103–155. [Google Scholar]
- Modesto, S.P. The cranial skeleton of the Early Permian aquatic reptile Mesosaurus tenuidens: Implications for relationships and palaeobiology. Zool. J. Linn. Soc. 2006, 146, 345–368. [Google Scholar] [CrossRef]
- Tsuji, L.A.; Müller, J.; Reisz, R.R. Anatomy of Emeroleter levis and the phylogeny of the nycteroleter parareptiles. J. Vertebr. Paleontol. 2012, 32, 45–67. [Google Scholar] [CrossRef]
- Modesto, S.P.; Scott, D.M.; MacDougall, M.J.; Sues, H.-D.; Evans, D.C.; Reisz, R.R. The oldest parareptile and the early diversification of reptiles. Proc. R. Soc. B 2015, 282, 20141912. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, M.J.; Modesto, S.P.; Reisz, R.R. A new reptile from the Richards Spur locality, Oklahoma, USA, and patterns of Early Permian parareptile diversification. J. Vertebr. Paleontol. 2016, 36, e1179641. [Google Scholar] [CrossRef]
- MacDougall, M.J.; Modesto, S.P.; Brocklehurst, N.; Verrière, A.; Reisz, R.R.; Fröbisch, J. Commentary: A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. Front. Earth Sci. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Ford, D.P.; Benson, R.B. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 2020, 4, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, G.; Ferigolo, J.; Meneghel, M.; Laurin, M. The oldest known amniotic embryos suggest viviparity in mesosaurs. Hist. Biol. 2012, 24, 620–630. [Google Scholar] [CrossRef]
- Núñez Demarco, P.; Meneghel, M.; Laurin, M.; Piñeiro, G. Was Mesosaurus a fully aquatic reptile? Front. Ecol. Evol. 2018, 6, 109. [Google Scholar] [CrossRef]
- Núñez Demarco, P.; Meneghel, M.; Laurin, M.; Piñeiro, G. Was Mesosaurus an aquatic animal? how do we know if an ancient species was aquatic or terrestrial? Front. Young Minds 2019, 7, e00039. [Google Scholar] [CrossRef]
- Modesto, S.P. The postcranial skeleton of the aquatic parareptile Mesosaurus tenuidens from the Gondwanan Permian. J. Vertebr. Paleontol. 2010, 30, 1378–1395. [Google Scholar] [CrossRef]
- Calisto, V.; Piñeiro, G. A large cockroach from the mesosaur-bearing Konservat-Lagerstatte (Mangrullo Formation), Late Paleozoic of Uruguay. PeerJ 2019, 7, e6289. [Google Scholar] [CrossRef] [PubMed]
- Hachiro, J. Occurrences of evaporites in the Irati Subgroup (Late Permian, Parana Basin). An. Acad. Bras. Ciências 2000, 72, 600–601. [Google Scholar] [CrossRef]
- Dos Anjos, C.W.D.; Meunier, A.; Mendes Guimarães, E.; El Albani, A. Saponite-Rich Black Shales and Nontronite Beds of the Permian Irati Formation: Sediment Sources and Thermal Metamorphism (Paraná Basin, Brazil). Clays Clay Miner. 2010, 58, 606–626. [Google Scholar] [CrossRef]
- Piñeiro, G.; Ramos, A.; Goso, C.; Scarabino, F.; Laurin, M. Unusual environmental conditions preserve a Permian mesosaur-bearing Konservat-Lagerstätte from Uruguay. Acta Palaeontol. Pol. 2012, 57, 299–318. [Google Scholar] [CrossRef]
- Xavier, P.L.A.; Silva, A.F.; Bento-Soares, M.; Horn, B.L.D.; Schultz, C.L. Sequence stratigraphy control on fossil occurrence and concentration in the epeiric mixed carbonate-siliciclastic ramp of the Early Permian Irati Formation of southern Brazil. J. South Am. Earth Sci. 2018, 88, 157–178. [Google Scholar] [CrossRef]
- Holanda, W.; Bergamaschi, S.; Santos, A.C.; Rodrigues, R.; Bertolino, L.C. Characterization of the Assistência Member, Irati Formation, Paraná Basin, Brazil: Organic matter and mineralogy. J. Sediment. Environ. 2019, 3, 36–45. [Google Scholar] [CrossRef]
- Behrensmeyer, A. Taphonomic and ecologic information from bone weathering. Paleobiology 1978, 4, 150–162. [Google Scholar] [CrossRef]
- MacGregor, J.H. Mesosaurus brasiliensis nov. sp. no Permiano do Brasil/On Mesosaurus brasiliensis nov. sp. from the Permian of Brazil. In Commisão de Estudos das Minas de Carvão de Pedra do Brazil; Imprenta Nacional: Rio de Janeiro, Brazil, 1908; pp. 301–336. [Google Scholar]
- Huene, H.F.v. Osteologie und systematische Stellung von Mesosaurus. Palaeontogr. Abt. A 1941, 92, 45–58. [Google Scholar]
- Romer, A.S. The Osteology of the Reptiles; The University of Chicago Press: Chicago, IL, USA, 1956; 772p. [Google Scholar]
- Rossmann, T. Studien an Mesosauriern (Amniota inc. sed., Mesosauridae): 3*. Neue Aspekte zur Anatomie, Erhaltung und Paläoökologie aufgrund der Exemplare im Paläontologischen Institut der Universität Zürich. Neues Jahrb. Geol. Paläontologie 2001, 224, 197–221. [Google Scholar] [CrossRef]
- Piñeiro, G. Paleofaunas del Pérmico y Permo-Triásico de Uruguay. Bioestratigrafía, Paleobiogeografía y Sistemática. Ph.D. Thesis, Universidad de la República, Montevideo, Uruguay, 2004; 175p. Unpublished. [Google Scholar]
- Piñeiro, G. Los mesosaurios y otros fósiles de fines del Paleozoico. In Fósiles de Uruguay; Perea, D., Ed.; DIRAC, Facultad de Ciencias: Montevideo, Uruguay, 2008; pp. 179–205. [Google Scholar]
- Piñeiro, G.; Ferigolo, J.; Ramos, A.; Laurin, M. Cranial morphology of the Early Permian mesosaurid Mesosaurus tenuidens and the evolution of the lower temporal fenestration reassessed. Comptes Rendus Palevol. 2012, 11, 379–391. [Google Scholar] [CrossRef]
- Rubenstein, N.M. Ontogenetic allometry in the salamander genus Desmognathus. Am. Midl. Nat. 1971, 85, 329–348. [Google Scholar] [CrossRef]
- Leduc, D.J. A comparative analysis of the reduced major axis technique of fitting lines to bivariate data. Can. J. For. Res. 1987, 17, 654–659. [Google Scholar] [CrossRef]
- Anderson, T.L.; Ousterhout, B.H.; Drake, D.L.; Burkhart, J.J.; Rowland, F.E.; Peterman, W.E.; Semlitsch, R.D. Differences in larval allometry among three ambystomatid salamanders. J. Herpetol. 2016, 50, 464–470. [Google Scholar] [CrossRef]
- Piñeiro, G.; Ferigolo, J.; Mones, A.; Núñez Demarco, P. Mesosaur taxonomy reappraisal: Are Stereosternum and Brazilosaurus valid taxa? Rev. Bras. De Paleontol. 2021, 24, 205–235. [Google Scholar] [CrossRef]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar] [PubMed]
- Carlisbino, T.; Macedo de Farias, B.D.; Sedor, F.A.; Schultz, C.L. Bone microstructure analyses in ontogenetic series of Mesosaurus tenuidens from the early Permian of Brazil. Anat. Rec. 2024, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Wang, X.; Liu, H.; Miao, D.; Zhao, Q.; Wu, G.; Liu, J.; Li, Q.; Sun, Z.; Wang, N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc. Natl. Acad. Sci. USA 2008, 105, 13246–13251. [Google Scholar] [CrossRef] [PubMed]
- Houssaye, A. “Pachyostosis” in aquatic amniotes: A review. Integr. Zool. 2009, 4, 325–340. [Google Scholar] [CrossRef]
- Houssaye, A. Bone histology of aquatic reptiles: What does it tell us about secondary adaptation to an aquatic life? Biol. J. Linn. Soc. Lond. 2013, 108, 3–21. [Google Scholar] [CrossRef]
- Amson, E.; Muizon, C.D.; Laurin, M.; Argot, C.; Buffrénil, V.D. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc. R. Soc. Lond. B 2014, 281, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, G.; Morosi, E.; Ramos, A.; Scarabino, F. Pygocephalomorph crustaceans from the Early Permian of Uruguay: Constraints on taxonomy. Rev. Bras. Paleontol. 2012, 15, 33–48. [Google Scholar] [CrossRef]
- Silva, R.R.; Ferigolo, J.; Bajdek, P.; Piñeiro, G.H. The feeding habits of Mesosauridae. Front. Earth Sci. 2017, 5, 23. [Google Scholar] [CrossRef]
- Bergmann, C. Uber Die Verhaltnisse Der Warmekonomie Der Tiere Zu Ihrer Grosse. Gott. Stud. 1847, 3, 595–708. [Google Scholar]
- Riemer, K.; Guralnick, R.P.; White, E.P. No general relationship between mass and temperature in endothermic species. E-life 2018, 9, e27166. [Google Scholar] [CrossRef]
- Stanley, S.M. An explanation for Cope’s rule. Evolution 1973, 27, 1–26. [Google Scholar] [CrossRef]
- Caron, F.S.; Pie, M.R. The evolution of body size in terrestrial tetrapods. Evol. Biol. 2024, 51, 283–294. [Google Scholar] [CrossRef]
- Romer, A.S.; Price, L.I. Review of the Pelycosauria; Arno Press: New York, NY, USA, 1940; 535p. [Google Scholar]
- Werneburg, I. Morphofunctional categories and ontogenetic origin of temporal skull openings in amniotes. Front. Earth Sci. 2019, 7, 13. [Google Scholar] [CrossRef]
- Romer, A.S. Origin of the amniote egg. Sci. Mon. 1957, 85, 57–63. [Google Scholar]
- Lombardi, J. Embryo retention and evolution of the amniote condition. J. Morphol. 1994, 220, 368. [Google Scholar]
- Laurin, M.; Girondot, M. Embryo retention in sarcopterygians, and the origin of the extra-embryonic membranes of the amniotic egg. Ann. Sci. Nat. Zool. Paris 1999, 20, 99–104. [Google Scholar] [CrossRef]
- Stewart, J.R. Morphology and evolution of the egg of oviparous amniotes. In Amniote Origins: Completing the Transition to Land; Sumida, S., Martin, K.L.M., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 291–326. [Google Scholar]
- Piñeiro, G. Nuevos aportes a la Paleontología del Pérmico de Uruguay. In Cuencas Sedimentarias de Uruguay: Geología, Paleontología y Recursos Minerales, Paleozoico; Veroslavsky, G., Ubilla, M., Martínez, S., Eds.; Dirac−Facultad de Ciencias: Montevideo, Uruguay, 2006; pp. 257–279. [Google Scholar]
- Soares, M.B. A taphonomic model for the Mesosauridae assemblage of the Irati Formation (Paraná Basin, Brazil). Geol. Acta 2003, 1, 349–361. [Google Scholar]
- Caldwell, M. Developmental constraints and limb evolution in Permian and modern lepidosauromorph diapsids. J. Vertebr. Paleontol. 1995, 14, 459–471. [Google Scholar] [CrossRef]
- Rossmann, T.; Maisch, M.W. Das Mesosaurier-Material in der Bayerischen Staatssammlung für Paläontologie und Historische Geologie: Übersicht und neue Erkenntnisse. Mitteilungen Bayer. Staatssamml. Plaäontologie Hist. Geol. 1999, 39, 69–83. [Google Scholar]
- Mayer, E.L.; Kerber, L.; Ribeiro, A.M.; Hubbe, A. The dominance of an extant gregarious taxon in an attritional accumulation: Taphonomy and palaeoecological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 505, 73–85. [Google Scholar] [CrossRef]
- Klein, N.; Verrière, A.; Sartorelli, H.; Wintrich, T.; Fröbisch, J. Microanatomy and growth of the mesosaurs Stereosternum tumidum and Brazilosaurus sanpauloensis (Reptilia, Parareptilia). Foss. Rec. 2019, 22, 91–110. [Google Scholar] [CrossRef]
- Dewaele, L.; Lambert, O.; Laurin, M.; De Kock, T.; Louwye, S.; de Buffrénil, V. Generalized Osteosclerotic Condition in the Skeleton of Nanophoca vitulinoides, a Dwarf Seal from the Miocene of Belgium. J. Mamm. Evol. 2019, 26, 517–543. [Google Scholar] [CrossRef]
- Dewaele, L.; Goldin, P.; Marx, F.G.; Lambert, O.; Laurin, M.; Obadă, T.; de Buffrénil, V. Hypersalinity drives convergent bone mass increases in Miocene marine mammals from the Paratethys. Curr. Biol. 2022, 32, 248–255. [Google Scholar] [CrossRef]
- Bastos, L.P.H.; Rodrigues, R.; Pereira, E.; Bergamaschi, S.; Alferes, C.L.F.; Augland, L.E.; Domeier, M.; Planke, S.; Svensen, H.H. The birth and demise of the vast epicontinental Permian Irati-Whitehill sea: Evidence from organic geochemistry, geochronology, and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 10103. [Google Scholar] [CrossRef]
- Araújo, L.M.; Rodrigues, R.; Scherer, C.M.S. Sequências deposicionais Irati: Arcabouço químio-estratigráfico e inferências paleoambientais. Ciência-Técnica-Petróleo 2001, 20, 193–202. [Google Scholar]
- Beri, A.; Daners, G. Palinología de la Perforación N° 221, Pérmico, R.O. del Uruguay. Geociências 1995, 14, 145–160. [Google Scholar]
- Chumakov, N.M.; Zharkov, M.A. Climate during Permian–Triassic Biosphere Reorganizations Article 1: Climate of the Early Permian. Stratigr. Geol. Correl. 2002, 10, 586–602. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñeiro, G.; Núñez Demarco, P.; Laurin, M. The Largest Mesosaurs Ever Known: Evidence from Scanty Records. Foss. Stud. 2025, 3, 1. https://doi.org/10.3390/fossils3010001
Piñeiro G, Núñez Demarco P, Laurin M. The Largest Mesosaurs Ever Known: Evidence from Scanty Records. Fossil Studies. 2025; 3(1):1. https://doi.org/10.3390/fossils3010001
Chicago/Turabian StylePiñeiro, Graciela, Pablo Núñez Demarco, and Michel Laurin. 2025. "The Largest Mesosaurs Ever Known: Evidence from Scanty Records" Fossil Studies 3, no. 1: 1. https://doi.org/10.3390/fossils3010001
APA StylePiñeiro, G., Núñez Demarco, P., & Laurin, M. (2025). The Largest Mesosaurs Ever Known: Evidence from Scanty Records. Fossil Studies, 3(1), 1. https://doi.org/10.3390/fossils3010001