Sepsis Biomarkers: What Surgeons Need to Know
Abstract
1. Introduction
2. Materials and Methods
3. Sepsis Diagnosis Biomarkers
3.1. Septic Shock Assessment and Septic Phenotype Biomarkers
3.2. Biomarker for Earlier Discontinuation of Antibiotics
3.3. Biomarkers for Post-Acute Sepsis and Recurrence Prevention
4. Conclusions
4.1. Limitations
4.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giamarellos-Bourboulis, E.J.; Aschenbrenner, A.C.; Bauer, M.; Bock, C.; Calandra, T.; Gat-Viks, I.; Kyriazopoulou, E.; Lupse, M.; Monneret, G.; Pickkers, P.; et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 2024, 25, 19–28. [Google Scholar] [CrossRef]
- Cajander, S.; Kox, M.; Scicluna, B.P.; Weigand, M.A.; Mora, R.A.; Flohé, S.B.; Martin-Loeches, I.; Lachmann, G.; Girardis, M.; Garcia-Salido, A.; et al. Profiling the dysregulated immune response in sepsis: Overcoming challenges to achieve the goal of precision medicine. Lancet Respir. Med. 2024, 12, 305–322. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Jaccard-Stolz, D.; Bingisser, R.; Gencay, M.M.; Huber, P.R.; Tamm, M.; Müller, B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: Cluster-randomised, single-blinded intervention trial. Lancet 2004, 363, 600–607. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Watson, R.S.; Sorce, L.R.; Argent, A.C.; Menon, K.; Hall, M.W.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 665–674. [Google Scholar] [CrossRef]
- Schuetz, P.; Christ-Crain, M.; Wolbers, M.; Schild, U.; Thomann, R.; Falconnier, C.; Widmer, I.; Neidert, S.; Blum, C.A.; Schönenberger, R.; et al. Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: A prospective, multicenter, randomized controlled trial. BMC Health Serv. Res. 2007, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Slim, M.A.; van Mourik, N.; Bakkerus, L.; Fuller, K.; Acharya, L.; Giannidis, T.; Dionne, J.C.; Oczkowski, S.J.W.; Netea, M.G.; Pickkers, P.; et al. Towards personalized medicine: A scoping review of immunotherapy in sepsis. Crit. Care 2024, 28, 183. [Google Scholar] [CrossRef] [PubMed]
- Niederman, M.S.; Baron, R.M.; Bouadma, L.; Calandra, T.; Daneman, N.; DeWaele, J.; Kollef, M.H.; Lipman, J.; Nair, G.B. Initial antimicrobial management of sepsis. Crit. Care 2021, 25, 307. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K.; Ferner, R.E. Biomarkers-A General Review. Curr. Protoc. Pharmacol. 2017, 76, 9–23. [Google Scholar] [CrossRef]
- Sprung, C.L.; Reinhart, K. Definitions for Sepsis and Septic Shock. JAMA 2016, 316, 456–457. [Google Scholar] [CrossRef]
- Chimenti, C.; Sears, G.; McIntyre, J. Sepsis in Home Health Care: Screening, Education, and Rapid Triage. J. Nurs. Care Qual. 2021, 36, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Menon, K.; Schlapbach, L.J.; Akech, S.; Argent, A.; Biban, P.; Carrol, E.D.; Chiotos, K.; Jobayer Chisti, M.; Evans, I.V.R.; Inwald, D.P.; et al. Criteria for Pediatric Sepsis-A Systematic Review and Meta-Analysis by the Pediatric Sepsis Definition Taskforce. Crit. Care Med. 2022, 50, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Munroe, E.S.; Hyzy, R.C.; Semler, M.W.; Shankar-Hari, M.; Young, P.J.; Zampieri, F.G.; Prescott, H.C. Evolving Management Practices for Early Sepsis-induced Hypoperfusion: A Narrative Review. Am. J. Respir. Crit. Care Med. 2023, 207, 1283–1299. [Google Scholar] [CrossRef]
- Bolanaki, M.; Winning, J.; Slagman, A.; Lehmann, T.; Kiehntopf, M.; Stacke, A.; Neumann, C.; Reinhart, K.; Möckel, M.; Bauer, M. Biomarkers Improve Diagnostics of Sepsis in Adult Patients With Suspected Organ Dysfunction Based on the Quick Sepsis-Related Organ Failure Assessment (qSOFA) Score in the Emergency Department. Crit. Care Med. 2024, 52, 887–899. [Google Scholar] [CrossRef]
- Kim, T.H.; Kang, J.; Jang, H.; Joo, H.; Lee, G.Y.; Kim, H.; Cho, U.; Bang, H.; Jang, J.; Han, S.; et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 2024, 632, 893–902. [Google Scholar] [CrossRef]
- Liang, J.; Cai, Y.; Shao, Y. Comparison of presepsin and Mid-regional pro-adrenomedullin in the diagnosis of sepsis or septic shock: A systematic review and meta-analysis. BMC Infect. Dis. 2023, 23, 288. [Google Scholar] [CrossRef]
- Parri, N.; Trippella, G.; Lisi, C.; De Martino, M.; Galli, L.; Chiappini, E. Accuracy of presepsin in neonatal sepsis: Systematic review and meta-analysis. Expert. Rev. Anti-Infect. Ther. 2019, 17, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Kim, E.H.; Kim, H.Y.; Ahn, J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: A systemic review and meta-analysis. BMC Infect. Dis. 2019, 19, 760. [Google Scholar] [CrossRef]
- Kang, S.; Kishimoto, T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp. Mol. Med. 2021, 53, 1116–1123. [Google Scholar] [CrossRef]
- Zhao, J.O.; Patel, B.K.; Krishack, P.; Stutz, M.R.; Pearson, S.D.; Lin, J.; Lecompte-Osorio, P.A.; Dugan, K.C.; Kim, S.; Gras, N.; et al. Identification of Clinically Significant Cytokine Signature Clusters in Patients With Septic Shock. Crit. Care Med. 2023, 51, e253–e263. [Google Scholar] [CrossRef]
- Gharamti, A.; Samara, O.; Monzon, A.; Scherger, S.; DeSanto, K.; Sillau, S.; Franco-Paredes, C.; Henao-Martínez, A.; Shapiro, L. Association between cytokine levels, sepsis severity and clinical outcomes in sepsis: A quantitative systematic review protocol. BMJ Open 2021, 11, e048476. [Google Scholar] [CrossRef]
- Procházka, V.; Lacina, L.; Smetana, K., Jr.; Svoboda, M.; Skřivanová, K.; Beňovská, M.; Jarkovský, J.; Křen, L.; Kala, Z. Serum concentrations of proinflammatory biomarker interleukin-6 (IL-6) as a predictor of postoperative complications after elective colorectal surgery. World J. Surg. Oncol. 2023, 21, 384. [Google Scholar] [CrossRef]
- Ooi, S.Z.Y.; Spencer, R.J.; Hodgson, M.; Mehta, S.; Phillips, N.L.; Preest, G.; Manivannan, S.; Wise, M.P.; Galea, J.; Zaben, M. Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: A systematic review. Neurosurg. Rev. 2022, 45, 3035–3054. [Google Scholar] [CrossRef]
- Pierrakos, C.; Vincent, J.L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef]
- Galvan, D.D.; Yu, Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv. Healthc. Mater. 2018, 7, e1701335. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.J.; Csordas, A.; Falk, V.; Slankamenac, K.; Rudiger, A.; Schönrath, F.; Rodriguez Cetina Biefer, H.; Starck, C.T.; Graf, R. Pancreatic stone protein predicts postoperative infection in cardiac surgery patients irrespective of cardiopulmonary bypass or surgical technique. PLoS ONE 2015, 10, e0120276. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.J.; Niggemann, P.; Buehler, P.K.; Lehner, F.; Schweizer, R.; Rittirsch, D.; Fuchs, N.; Waldner, M.; Steiger, P.; Giovanoli, P.; et al. Pancreatic Stone Protein Predicts Sepsis in Severely Burned Patients Irrespective of Trauma Severity: A Monocentric Observational Study. Ann. Surg. 2021, 274, e1179–e1186. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, P.; Nora, D.; Coelho, L.; Povoa, P. Pancreatic Stone Protein: Review of a New Biomarker in Sepsis. J. Clin. Med. 2022, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Bradley, Z.; Bhalla, N. Point-of-care diagnostics for sepsis using clinical biomarkers and microfluidic technology. Biosens. Bioelectron. 2023, 227, 115181. [Google Scholar] [CrossRef]
- Melegari, G.; Giuliani, E.; Di Pietro, G.; Alberti, F.; Campitiello, M.; Bertellini, E.; Barbieri, A. Point-of-care pancreatic stone protein measurement in critically ill COVID-19 patients. BMC Anesthesiol. 2023, 23, 226. [Google Scholar] [CrossRef]
- Ashley, B.K.; Hassan, U. Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1701. [Google Scholar] [CrossRef]
- Kuil, S.D.; Hidad, S.; Fischer, J.C.; Harting, J.; Hertogh, C.M.; Prins, J.M.; van Leth, F.; de Jong, M.D.; Schneeberger, C. Sensitivity of point-of-care testing C reactive protein and procalcitonin to diagnose urinary tract infections in Dutch nursing homes: PROGRESS study protocol. BMJ Open 2019, 9, e031269. [Google Scholar] [CrossRef]
- Bottari, G.; Paionni, E.; Fegatelli, D.A.; Murciano, M.; Rosati, F.; Ferrigno, F.; Pisani, M.; Cristaldi, S.; Musolino, A.; Borrelli, G.; et al. Pancreatic Stone Protein in the Diagnosis of Sepsis in Children Admitted to High-Dependency Care: A Single-Center Prospective Cohort Study. Pediatr. Crit. Care Med. 2024, 25, 937–946. [Google Scholar] [CrossRef]
- Yang, H.; Du, L.; Zhang, Z. Potential biomarkers in septic shock besides lactate. Exp. Biol. Med. 2020, 245, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Gris, P.; Coffernils, M.; Kahn, R.J.; Vincent, J.L. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am. J. Surg. 1996, 171, 221–226. [Google Scholar] [CrossRef]
- Vincent, J.L.; Quintairos, E.S.A.; Couto, L., Jr.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 257. [Google Scholar] [CrossRef]
- Alshiakh, S.M. Role of serum lactate as prognostic marker of mortality among emergency department patients with multiple conditions: A systematic review. SAGE Open Med. 2023, 11, 20503121221136401. [Google Scholar] [CrossRef] [PubMed]
- Khodashahi, R.; Sarjamee, S. Early lactate area scores and serial blood lactate levels as prognostic markers for patients with septic shock: A systematic review. Infect. Dis. 2020, 52, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Forni, L.G.; Busse, L.W.; McCurdy, M.T.; Ham, K.R.; Boldt, D.W.; Hästbacka, J.; Khanna, A.K.; Albertson, T.E.; Tumlin, J.; et al. Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock. A Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 1253–1261. [Google Scholar] [CrossRef]
- Legrand, M.; Khanna, A.K.; Ostermann, M.; Kotani, Y.; Ferrer, R.; Girardis, M.; Leone, M.; DePascale, G.; Pickkers, P.; Tissieres, P.; et al. The renin-angiotensin-aldosterone-system in sepsis and its clinical modulation with exogenous angiotensin II. Crit. Care 2024, 28, 389. [Google Scholar] [CrossRef]
- Hilgenfeldt, U.; Kienapfel, G.; Kellermann, W.; Schott, R.; Schmidt, M. Renin-angiotensin system in sepsis. Clin. Exp. Hypertens. A 1987, 9, 1493–1504. [Google Scholar] [CrossRef]
- Barbieri, A.; Giuliani, E.; Marchetti, G.; Ugoletti, E.; Della Volpe, S.; Albertini, G. Plasma renin concentration as a predictor of outcome in a medical intensive care setting: A retrospective pilot study. Minerva Anestesiol. 2012, 78, 1248–1253. [Google Scholar]
- Gleeson, P.J.; Crippa, I.A.; Mongkolpun, W.; Cavicchi, F.Z.; Van Meerhaeghe, T.; Brimioulle, S.; Taccone, F.S.; Vincent, J.L.; Creteur, J. Renin as a Marker of Tissue-Perfusion and Prognosis in Critically Ill Patients. Crit. Care Med. 2019, 47, 152–158. [Google Scholar] [CrossRef]
- Khanna, A.K. Tissue Perfusion and Prognosis in the Critically Ill-Is Renin the New Lactate? Crit. Care Med. 2019, 47, 288–290. [Google Scholar] [CrossRef]
- Jeyaraju, M.; McCurdy, M.T.; Levine, A.R.; Devarajan, P.; Mazzeffi, M.A.; Mullins, K.E.; Reif, M.; Yim, D.N.; Parrino, C.; Lankford, A.S.; et al. Renin Kinetics Are Superior to Lactate Kinetics for Predicting In-Hospital Mortality in Hypotensive Critically Ill Patients. Crit. Care Med. 2022, 50, 50–60. [Google Scholar] [CrossRef]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Leone, M.; Einav, S.; Antonucci, E.; Depret, F.; Lakbar, I.; Martin-Loeches, I.; Wieruszewski, P.M.; Myatra, S.N.; Khanna, A.K. Multimodal strategy to counteract vasodilation in septic shock. Anaesth. Crit. Care Pain. Med. 2023, 42, 101193. [Google Scholar] [CrossRef]
- Ammar, M.A.; Ammar, A.A.; Wieruszewski, P.M.; Bissell, B.D.; Long, M.T.; Albert, L.; Khanna, A.K.; Sacha, G.L. Timing of vasoactive agents and corticosteroid initiation in septic shock. Ann. Intensive Care 2022, 12, 47. [Google Scholar] [CrossRef]
- Teixeira, J.P.; Perez Ingles, D.; Barton, J.B.; Dean, J.T.; Garcia, P.; Kunkel, S.J.; Sarangarm, P.; Weiss, N.K.; Schaich, C.L.; Busse, L.W.; et al. The scientific rationale and study protocol for the DPP3, Angiotensin II, and Renin Kinetics in Sepsis (DARK-Sepsis) randomized controlled trial: Serum biomarkers to predict response to angiotensin II versus standard-of-care vasopressor therapy in the treatment of septic shock. Trials 2024, 25, 182. [Google Scholar] [CrossRef] [PubMed]
- Flannery, A.H.; Kiser, A.S.; Behal, M.L.; Li, X.; Neyra, J.A. RAS inhibition and sepsis-associated acute kidney injury. J. Crit. Care 2022, 69, 153986. [Google Scholar] [CrossRef] [PubMed]
- Tibi, S.; Zeynalvand, G.; Mohsin, H. Role of the Renin Angiotensin Aldosterone System in the Pathogenesis of Sepsis-Induced Acute Kidney Injury: A Systematic Review. J. Clin. Med. 2023, 12, 4566. [Google Scholar] [CrossRef]
- Salgado, D.R.; Rocco, J.R.; Silva, E.; Vincent, J.L. Modulation of the renin-angiotensin-aldosterone system in sepsis: A new therapeutic approach? Expert. Opin. Ther. Targets 2010, 14, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.S.; Frota, M.L.; Gonzaga, M.J.D.; Vattimo, M.F.F.; Lima, C. The Role of Biomarkers in Diagnosis of Sepsis and Acute Kidney Injury. Biomedicines 2024, 12, 931. [Google Scholar] [CrossRef]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef]
- Singh, R.; Watchorn, J.C.; Zarbock, A.; Forni, L.G. Prognostic Biomarkers and AKI: Potential to Enhance the Identification of Post-Operative Patients at Risk of Loss of Renal Function. Res. Rep. Urol. 2024, 16, 65–78. [Google Scholar] [CrossRef]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef]
- Monneret, G.; Venet, F. Monocyte HLA-DR in sepsis: Shall we stop following the flow? Crit. Care 2014, 18, 102. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Calandra, T.; Soares, M.P.; Bauer, M.; Wiersinga, W.J.; Prescott, H.C.; Knight, J.C.; Baillie, K.J.; Bos, L.D.J.; Derde, L.P.G.; et al. Reframing sepsis immunobiology for translation: Towards informative subtyping and targeted immunomodulatory therapies. Lancet Respir. Med. 2024, 12, 323–336. [Google Scholar] [CrossRef]
- Chen, H.; Luo, H.; Tian, T.; Li, S.; Jiang, Y. Integrated Analyses of Single-Cell Transcriptome and Mendelian Randomization Reveal the Protective Role of Resistin in Sepsis Survival in Intensive Care Unit. Int. J. Mol. Sci. 2023, 24, 14982. [Google Scholar] [CrossRef] [PubMed]
- Houwink, A.P.; Rijkenberg, S.; Bosman, R.J.; van der Voort, P.H. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: A retrospective cohort analysis. Crit. Care 2016, 20, 56. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Belletti, A.; Maiucci, G.; Lodovici, M.; Fresilli, S.; Landoni, G.; Bellomo, R.; Zarbock, A. Renin as a Prognostic Marker in Intensive Care and Perioperative Settings: A Scoping Review. Anesth. Analg. 2024, 138, 929–936. [Google Scholar] [CrossRef]
- Wirz, Y.; Meier, M.A.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; Tubach, F.; Schroeder, S.; Nobre, V.; Annane, D.; et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: A patient-level meta-analysis of randomized trials. Crit. Care 2018, 22, 191. [Google Scholar] [CrossRef]
- Arulkumaran, N.; Khpal, M.; Tam, K.; Baheerathan, A.; Corredor, C.; Singer, M. Effect of Antibiotic Discontinuation Strategies on Mortality and Infectious Complications in Critically Ill Septic Patients: A Meta-Analysis and Trial Sequential Analysis. Crit. Care Med. 2020, 48, 757–764. [Google Scholar] [CrossRef]
- Prkno, A.; Wacker, C.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock--a systematic review and meta-analysis. Crit. Care 2013, 17, R291. [Google Scholar] [CrossRef]
- Gu, W.J.; Liu, J.C. Procalcitonin-guided therapy in severe sepsis and septic shock. Crit. Care 2014, 18, 427. [Google Scholar] [CrossRef]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; González Del Castillo, J.; Jensen, J.U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018, 18, 95–107. [Google Scholar] [CrossRef]
- Gregoriano, C.; Heilmann, E.; Molitor, A.; Schuetz, P. Role of procalcitonin use in the management of sepsis. J. Thorac. Dis. 2020, 12, S5–S15. [Google Scholar] [CrossRef]
- Hung, S.K.; Lan, H.M.; Han, S.T.; Wu, C.C.; Chen, K.F. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and Systemic Infection. Biomedicines 2020, 8, 494. [Google Scholar] [CrossRef]
- Masson, S.; Caironi, P.; Spanuth, E.; Thomae, R.; Panigada, M.; Sangiorgi, G.; Fumagalli, R.; Mauri, T.; Isgrò, S.; Fanizza, C.; et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: Data from the Albumin Italian Outcome Sepsis trial. Crit. Care 2014, 18, R6. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.T.; Su, C.M.; Hsiao, S.Y.; Chen, F.C.; Lai, Y.R.; Huang, C.C.; Lu, C.H. The Prognostic Value of Serum Soluble TREM-1 on Outcome in Adult Patients with Sepsis. Diagnostics 2021, 11, 1979. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Giamarellos-Bourboulis, E.J. Antimicrobial Stewardship Using Biomarkers: Accumulating Evidence for the Critically Ill. Antibiotics 2022, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Lee, K.H.; Song, Y.G.; Han, S.H. Discrepancy of C-Reactive Protein, Procalcitonin and Interleukin-6 at Hospitalization: Infection in Patients with Normal C-Reactive Protein, Procalcitonin and High Interleukin-6 Values. J. Clin. Med. 2022, 11, 7324. [Google Scholar] [CrossRef]
- Marshall, J.C.; Reinhart, K. Biomarkers of sepsis. Crit. Care Med. 2009, 37, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Kyriazopoulou, E.; Liaskou-Antoniou, L.; Adamis, G.; Panagaki, A.; Melachroinopoulos, N.; Drakou, E.; Marousis, K.; Chrysos, G.; Spyrou, A.; Alexiou, N.; et al. Procalcitonin to Reduce Long-Term Infection-associated Adverse Events in Sepsis. A Randomized Trial. Am. J. Respir. Crit. Care Med. 2021, 203, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst. Rev. 2017, 10, Cd007498. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Kiss, N.; Baka, M.; Trásy, D.; Zubek, L.; Fehérvári, P.; Harnos, A.; Turan, C.; Hegyi, P.; Molnár, Z. Procalcitonin-guided antibiotic therapy may shorten length of treatment and may improve survival-a systematic review and meta-analysis. Crit. Care 2023, 27, 394. [Google Scholar] [CrossRef]
- Kubo, K.; Sakuraya, M.; Sugimoto, H.; Takahashi, N.; Kano, K.I.; Yoshimura, J.; Egi, M.; Kondo, Y. Benefits and Harms of Procalcitonin- or C-Reactive Protein-Guided Antimicrobial Discontinuation in Critically Ill Adults With Sepsis: A Systematic Review and Network Meta-Analysis. Crit. Care Med. 2024, 52, e522–e534. [Google Scholar] [CrossRef]
- Njunge, J.M.; Gwela, A.; Kibinge, N.K.; Ngari, M.; Nyamako, L.; Nyatichi, E.; Thitiri, J.; Gonzales, G.B.; Bandsma, R.H.J.; Walson, J.L.; et al. Biomarkers of post-discharge mortality among children with complicated severe acute malnutrition. Sci. Rep. 2019, 9, 5981. [Google Scholar] [CrossRef]
- Ishaque, S.; Famularo, S.T., 3rd; Saleem, A.F.; Siddiqui, N.U.R.; Kazi, Z.; Parkar, S.; Hotwani, A.; Thomas, N.J.; Thompson, J.M.; Lahni, P.; et al. Biomarker-Based Risk Stratification in Pediatric Sepsis From a Low-Middle Income Country. Pediatr. Crit. Care Med. 2023, 24, 563–573. [Google Scholar] [CrossRef]
- Mount, M.C.; Remy, K.E. Help Wanted for Sepsis: Biomarkers in Low- and Middle-Income Countries Please Apply. Pediatr. Crit. Care Med. 2023, 24, 619–621. [Google Scholar] [CrossRef]
- Levy, M.M. The electrocardiogram for sepsis: How close are we? Crit. Care 2007, 11, 144. [Google Scholar] [CrossRef]
Model | Impact and Application |
---|---|
A biomarker directly linked to the disease mechanism, accurately predicting clinical outcomes. | This is the gold standard in biomarker research, providing a clear correlation between biomarker levels and disease progression or therapeutic response. |
The biomarker is linked to an intermediate stage of the disease but does not directly predict the outcome. | This scenario is common in cardiovascular biomarkers where surrogate endpoints like blood pressure are used instead of long-term cardiovascular mortality. |
The biomarker is associated with the disease but not causally linked. | While useful for risk stratification, it may not be reliable for guiding therapeutic interventions. |
The biomarker correlates with the disease purely by coincidence rather a mechanistic link. | This can lead to misleading conclusions in clinical trials, necessitating rigorous validation. |
A biomarker is believed to predict a clinical outcome but fails in real-world validation. | It happened frequently in observational studies. A historical example is the Cardiac Arrhythmia Suppression Trial (CAST), where antiarrhythmic drugs reduced arrhythmias (biomarker) but increased mortality (clinical endpoint), demonstrating the risk of using unreliable surrogates. |
Biomarker | Mechanism/Source | Kinetics | Main Clinical Role | Limitations | Strength of Evidence |
---|---|---|---|---|---|
Procalcitonin (PCT) | Prohormone of calcitonin; rises with bacterial infection | Increases within 6–12 h, half-life ~24 h | Diagnosis of bacterial infection; antibiotic stewardship (initiation/discontinuation) | False positives in trauma, surgery, renal failure; limited availability in some centers | Strong: multiple RCTs, meta-analyses, stewardship guidelines |
C-reactive protein (CRP) | Acute-phase protein from liver | Peaks 24–48 h, half-life 19 h | Non-specific marker of inflammation; supportive for infection/sepsis | Slow kinetics, low specificity | Strong: widely available, but low discriminative power |
Lactate | Product of anaerobic metabolism; marker of tissue hypoperfusion | Rapid rise with shock; clearance within hours if resuscitation effective | Severity of circulatory failure, prognosis, resuscitation target | Elevated also in seizures, liver disease, beta-agonist use | Strong: guideline-recommended, prognostic value confirmed |
Pancreatic Stone Protein (PSP) | Glycoprotein secreted mainly by pancreas; rises with systemic stress/infection | Rapid increase during infection and systemic stress | Early diagnosis of infection/sepsis; point-of-care potential | Limited validation; assays not standardized; cost | Moderate: promising evidence, some multicenter studies |
Neutrophil Gelatinase-Associated Lipocalin (NGAL) | Glycoprotein from neutrophils and renal tubular cells | Early rise (hours) in kidney stress/injury | Prediction of acute kidney injury (AKI) in sepsis | Non-specific; also elevated in other renal/inflammatory conditions | Moderate: validated in AKI, limited sepsis-specific data |
Monocyte HLA-DR (mHLA-DR) | Surface expression marker of monocyte antigen presentation | Decrease reflects immune suppression; recovery correlates with immune reconstitution | Identification of immune paralysis; risk of secondary infections | Requires flow cytometry; thresholds not standardized | Moderate: prognostic, promising for immune monitoring |
Interleukin-6 (IL-6) | Pro-inflammatory cytokine released early in infection/tissue injury | Peaks rapidly; short half-life | Early inflammation marker; correlates with severity | Poor specificity (elevated in trauma, surgery, burns, autoimmunity); no validated thresholds | Weak: inconsistent results; limited clinical algorithms |
Renin | Hormone of RAAS; compensatory rise in vasodilatory shock | Increases rapidly with hypoperfusion/shock | Marker of shock severity, prognosis; potential for vasopressor guidance | Not infection-specific; assays less available | Emerging: pilot and ICU studies, promising but limited evidence |
Clinical Stage | Main Biomarkers | Clinical Purpose | Strengths | Limitations |
---|---|---|---|---|
Prehospital/Emergency | CRP, PCT, Lactate, PSP | Early identification of infection; risk stratification; triage | Rapid tests available; PSP shows early rise | Limited specificity; resource-dependent |
Hospital Admission (ED/Ward) | PCT, CRP, Lactate, IL-6 | Confirm infection vs. non-infectious inflammation; assess severity | Widely available; lactate recommended in guidelines | IL-6 non-specific; CRP slow kinetics |
ICU/Septic Shock | Lactate, PCT, Renin, mHLA-DR, NGAL | Assess shock severity; prognosis; immune status; AKI prediction | Lactate clearance validated; renin and mHLA-DR promising; NGAL sensitive for AKI | Renin/NGAL not infection-specific; mHLA-DR requires flow cytometry |
Post-acute/Recovery | mHLA-DR, CRP, PCT (trend) | Monitor immune recovery; risk of secondary infections; guide antibiotic discontinuation | Trends useful; immune monitoring possible | Limited validation; thresholds uncertain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melegari, G.; Arturi, F.; Gazzotti, F.; Villani, M.; Bertellini, E.; Barbieri, A. Sepsis Biomarkers: What Surgeons Need to Know. Anesth. Res. 2025, 2, 23. https://doi.org/10.3390/anesthres2040023
Melegari G, Arturi F, Gazzotti F, Villani M, Bertellini E, Barbieri A. Sepsis Biomarkers: What Surgeons Need to Know. Anesthesia Research. 2025; 2(4):23. https://doi.org/10.3390/anesthres2040023
Chicago/Turabian StyleMelegari, Gabriele, Federica Arturi, Fabio Gazzotti, Matteo Villani, Elisabetta Bertellini, and Alberto Barbieri. 2025. "Sepsis Biomarkers: What Surgeons Need to Know" Anesthesia Research 2, no. 4: 23. https://doi.org/10.3390/anesthres2040023
APA StyleMelegari, G., Arturi, F., Gazzotti, F., Villani, M., Bertellini, E., & Barbieri, A. (2025). Sepsis Biomarkers: What Surgeons Need to Know. Anesthesia Research, 2(4), 23. https://doi.org/10.3390/anesthres2040023