Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology
Abstract
1. Introduction
2. Diverse Fungal Spores in the Air
3. Aeromycological Studies
3.1. Sampling Techniques of Airborne Fungi
3.2. Identification and Taxonomy of Aeromycota
3.3. Limitations of Culture-Based Methods and Emergence of Metagenomic Approaches
3.4. Temporal and Spatial Variability in Airborne Fungal Populations
4. Indoor and Outdoor Sources of Air Borne Fungi
5. Health Impacts of Airborne Fungi
5.1. Indoor Fungi
5.1.1. Allergic Reactions
Allergic Rhinitis
Asthma Triggers and Exacerbation
Atopic Dermatitis (Eczema)
5.1.2. Respiratory Infections
Hypersensitivity Pneumonitis
Chronic Rhinosinusitis
5.1.3. Sick Building Syndrome
5.1.4. Neurological and Cognitive Effects
5.2. Outdoor Fungi
5.2.1. Allergic Reactions
Allergic Rhinitis and Rhinosinusitis
Asthma Exacerbation
Allergic Bronchopulmonary Mycosis
5.2.2. Respiratory Infections
Fungal Sinusitis
Invasive Pulmonary Aspergillosis
Hypersensitivity Pneumonitis
5.2.3. Dermal and Ocular Effects
6. Control Measures for Outdoor Fungi and Indoor Fungi
6.1. Monitoring
6.2. Building Design
6.3. Air Intake Management
6.4. Ventilation
6.5. Moisture Control
6.6. Regular Cleaning
7. Integrating AI into Aeromycology
7.1. AI for Fungal Spore Identification and Classification
7.2. Deep Learning for Microscopic Image Analysis
7.3. Predictive Modeling of Fungal Dispersion and Abundance
7.4. AI in Allergenicity Forecasting and Public Health

| Author and Citation | Advantages of the Study | Disadvantages of the Study | Potential Applications of the Study | Description of the Study | Future Scope of the Study | 
|---|---|---|---|---|---|
| Clancy, Markey [180] | The study provides the first real-time pollen and fungal spore monitoring dataset for Dublin City, using advanced real-time fluorescence spectroscopy instruments. It demonstrates the strong potential of the WIBS-NEO for real-time bioaerosol detection, particularly for pollen and spores, and validates real-time sensors against traditional volumetric impactor methods. The methodology introduces novel comparative approaches and rigorous data filtering for cross-instrument validation. | Limitations include the restricted particle size bins of the IBAC-2 device, which result in weak correlations with conventional sampling data. The campaign duration was relatively short for long-term trend analysis. Discrepancies in particle fluorescence and size range between instruments can introduce measurement bias, and there is a need for further refinement in the instrumentation, especially for the IBAC-2. | The findings support the development of efficient real-time bioaerosol early warning systems for public health and allergy management in urban settings. The real-time tools can be integrated into environmental monitoring networks and used for epidemiological studies linking bioaerosol concentration trends with health outcomes. Urban air quality forecasting and mitigation strategies can benefit from higher temporal-resolution bioaerosol data. | This study compared the performance of WIBS-NEO and IBAC-2 real-time fluorescence-based spectroscopic instruments to the traditional Hirst volumetric impactor for detecting primary biological aerosol particles (PBAPs) in urban Dublin. Data were collected over a 41-day period during summer, measuring ambient pollen and fungal spore concentrations. Correlation analyses were performed between device outputs, revealing the effectiveness of WIBS-NEO and highlighting limitations of IBAC-2. | Future research should involve longer monitoring campaigns to validate and strengthen the findings. Enhancements in real-time instrumentation, including more particle sizing and advanced fluorescence markers, are recommended. Broader integration of meteorological and pollution data with bioaerosol monitoring is necessary for better source attribution and public health impact assessment. Further investigation into differentiating bioaerosols from anthropogenic fluorescent particles is also suggested. | 
| Fidan, Çelik [183] | The study demonstrates the effective use of deep learning models—VGG16, EfficientNetB0, and MobileNetV3—for classifying microscopic images of dermatophyte fungi. The methodology includes a diverse, carefully curated dataset, and applies robust data augmentation and principal component analysis (PCA) for improved model generalization and visualization. The performance comparison highlights which architectures best suit the classification task. VGG16 achieved the most balanced performance, while MobileNetV3 achieved the highest overall accuracy. | Some classes, such as Candida albicans and Aspergillus niger, showed higher error rates in classification, signaling challenges in intra-class variability and image distinctiveness. The study primarily uses relatively small image segments (parcels), potentially missing contextual patterns. Training and validation rely heavily on a specific dataset (Defungi), which may limit immediate generalizability to other environments or acquisition protocols. Improvements in sample diversity and quality, as well as model ensemble methods, are needed for even better results. | These models can be integrated into diagnostic tools for rapid, automated, and accurate identification of dermatophyte infections in clinical laboratories. The approach can support medical professionals in both traditional and telemedicine settings, facilitating accelerated and more objective diagnostic workflows. Implementation in large-scale screening and public health surveillance of fungal infections becomes more feasible with AI-powered image analysis. | The research compares VGG16, EfficientNetB0, and MobileNetV3 deep learning models for classifying five different fungal types (Candida albicans, Aspergillus niger, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum) from microscopic images. A manually labeled and balanced dataset of 5000 images was used, with performance evaluated using accuracy, precision, recall, and F1 score. Data augmentation was applied and PCA was used for feature visualization. Results indicate promising performance, especially with MobileNetV3 achieving 86.3% accuracy. | Future development will focus on increasing dataset diversity and re-labeling new image segments for improved granularity and model performance, especially for challenging classes like Candida albicans. The integration of other AI models, like CNN variants and Vision Transformers, is planned. Application in telediagnosis and wider clinical scenarios is envisioned, expanding usability for remote and non-specialized healthcare practitioners. Adoption of larger and more varied datasets will aid in improving both generalization and classification success. | 
| Ren, Tan [182] | The dual-model deep learning framework combining YOLOX and MobileNet V2 achieves high precision, recall, and agreement with clinicians in identifying fungal forms. Diagnostic time and labor are significantly reduced using the AI-based approach. | Annotation of fungal images is time-consuming and requires considerable expertise. Generalization of the model may be limited by training data diversity and fungal species variability. | Can be integrated into clinical settings to automate fungal diagnosis from fluorescence images, assist clinicians, reduce workload, and support diagnostic decision-making. | The study presents an AI-driven system using YOLOX for detecting spores and hyphae, and MobileNet V2 for mycelium detection in fluorescence images from clinical samples. Data labeling and model evaluation were performed using multiple metrics and independent test sets. | Further optimization with alternative AI models (e.g., YOLOv5, Faster R-CNN), expanding and diversifying datasets, and advanced augmentation techniques could enhance accuracy and generalization for broader clinical and research applications. | 
| Bruffaerts, Graf [181] | Establishes rigorous best practices for cultivating and collecting reference fungal material, greatly improving training data reliability for automated identification systems. Demonstrates enhanced classification accuracy using standardized samples and innovative protocols for fungal spore harvesting and aerosolization. Validates airflow cytometry and machine learning for better recognition rates than prior methods. Enables reproducibility, rapid data generation, and improved species range for research and clinical applications. | Dataset generalizability is limited by species selection and cultivation conditions. Variability in spore morphology and chemical characteristics due to laboratory vs. environmental growth may affect classification. Harvesting and aerosolization protocols still face challenges with certain fungi, and fluorescence-based identification remains sensitive to humidity, age, and environmental factors. Some instrument limitations persist, including noise and imaging constraints. | Facilitates high-throughput, real-time fungal spore monitoring for environmental, agricultural, allergenic, and plant pathology sectors. Allows AI-driven systems to assist in early warning for crop and health management. Can provide cleaner datasets for algorithm development, support standardization, and contribute to international aerobiological networks and climate modeling. | Presents a methodological advancement combining chamber-based protocols, dry cyclone harvesting, controlled Petri dish cultures, and machine learning algorithms trained on holographic and fluorescence spectra. Describes cultivation of 17 selected fungi, techniques for aerosolizing spores, and the use of advanced monitors (SwisensPoleno Jupiter, Plair Rapid-E) to build reference datasets. Reports improved recognition rates for airborne fungal spores and set out guidelines for data standardization. | Recommends expansion to more fungal taxa and datasets, cross-validation between monitors, and inclusion of naturally aged or environmentally sourced spores. Proposes multi-instrument integration, more chemical and morphological analysis, and adaptation for international use. Calls for future research on bioaerosol diversity, fluorescent signal variability, and automated systems capable of distinguishing between complex particle types in diverse atmospheric contexts. | 
| Lee, Jeong [13] | The study introduces data-driven ML models, using qPCR, to predict fungal concentrations in diverse public facilities, increasing the accuracy and timeliness of air quality assessments. The Gradient Boosting model achieves strong predictive performance (R = 0.78 R = 0.78 R = 0.78), with interpretability enhanced through SHAP analysis. It leverages widely available environmental variables and uncovers influential factors, like facility type and precipitation. These strengths offer improved rapid monitoring compared to traditional culture or fluorescence methods. | The study is limited by geographic scope (South Korea) and facility types, which may restrict model generalizability. qPCR, while sensitive, entails longer sampling times and can be less practical for continuous real-time monitoring. Model accuracy depends on data labeling quality and environmental heterogeneity, with some instrumentation constraints remaining. The findings may not fully extrapolate to other climates or untested building types. | The models can be implemented to support routine indoor air management in large public spaces, aiding in early detection and response to bioaerosol threats. Their application could enhance health and safety protocols in day care centers, transit hubs, and retail environments. Potential exists for use in regulatory monitoring, epidemiological studies, and development of smart building solutions, benefiting public health and resource allocation. | The research quantifies fungal concentrations via qPCR in samples collected from various public facilities, then develops and validates seven ML models (including Gradient Boosting) linking these concentrations to environmental variables. It analyzes feature importance using SHAP, finding day care centers and precipitation to strongly affect indoor airborne fungi. Results show the Gradient Boosting model outperforms other approaches, offering valuable predictive insights. | Future research may expand geographic coverage and include additional building types to improve generalizability. Model development could incorporate more advanced algorithms, automated data integration, and real-time sensors for faster prediction. Validation across international settings and integration with broader air quality surveillance networks is recommended. There is potential for synergizing with health informatics and smart IoT monitoring platforms. | 
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kakde, U.B. Fungal bioaerosols: Global diversity, distribution and its impact on human beings and agricultural crops. Bionano Front. 2012, 5, 322–329. [Google Scholar]
- Shen, F.; Yao, M. Bioaerosol nexus of air quality, climate system and human health. Natl. Sci. Open 2023, 2, 20220050. [Google Scholar] [CrossRef]
- Ghosh, B.; Das, A.; Lal, H. Bioaerosol and Its Impact on Human Health. In Airborne Particulate Matter: Source, Chemistry and Health; Sonwani, S., Shukla, A., Eds.; Springer Nature: Singapore, 2022; pp. 167–193. [Google Scholar]
- Wijayawardene, N.N.; Bahram, M.; Sánchez-Castro, I.; Dai, D.-Q.; Ariyawansa, K.G.S.U.; Jayalal, U.; Suwannarach, N.; Tedersoo, L. Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J. Fungi 2021, 7, 703. [Google Scholar] [CrossRef] [PubMed]
- Käärik, A.; Keller, M.; Kiffer, M.; Perreau, J.; Reisinger, M. Atlas of Airborne Fungal Spores in Europe; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Magyar, D.; Vass, M.; Li, D.-W. Dispersal Strategies of Microfungi. In Biology of Microfungi; Li, D.-W., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 315–371. [Google Scholar]
- Pace, L.; Boccacci, L.; Casilli, M.; Fattorini, S. Temporal variations in the diversity of airborne fungal spores in a Mediterranean high altitude site. Atmos. Environ. 2019, 210, 166–170. [Google Scholar] [CrossRef]
- Alam, S.; Nisar, M.; Bano, S.A.; Ahmad, T. Impact of Aerial Fungal Spores on Human Health. In Hazardous Environmental Micro-pollutants, Health Impacts and Allied Treatment Technologies; Ahmed, T., Hashmi, M.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 219–240. [Google Scholar]
- Tham, R.; Erbas, B.; Dharmage, S.C.; Tang, M.L.K.; Aldakheel, F.; Lodge, C.J.; Thomas, P.S.; Taylor, P.E.; Abramson, M.J.; Lowe, A.J. Outdoor fungal spores and acute respiratory effects in vulnerable individuals. Environ. Res. 2019, 178, 108675. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Yao, J. Aerosolization of fungal spores in indoor environments. Sci. Total Environ. 2022, 820, 153003. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Chatkin, J.; Correa, L.; Santos, U. External Environmental Pollution as a Risk Factor for Asthma. Clin. Rev. Allergy Immunol. 2022, 62, 72–89. [Google Scholar] [CrossRef]
- Lee, B.G.; Jeong, K.H.; Kim, H.E.; Yeo, M.-K. Machine learning models for predicting indoor air-borne fungal concentrations in public facilities utilizing environmental variables. Environ. Pollut. 2025, 368, 125684. [Google Scholar] [CrossRef]
- Hasan, S.; Gupta, G. Fungal biodiversity: Evolution & distribution—A review. Int. J. Appl. Res. Stud. 2012, 1, 1–8. [Google Scholar]
- Rana, K.L.; Kour, D.; Sheikh, I.; Yadav, N.; Yadav, A.N.; Kumar, V.; Singh, B.P.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. In Advances in Endophytic Fungal Research: Present Status and Future Challenges; Singh, B.P., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–144. [Google Scholar]
- Shelton, B.G.; Kirkland, K.H.; Flanders, W.D.; Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Rainer, J.; Peintner, U.; Pöder, R. Biodiversity and concentration of airborne fungi in a hospital environment. Mycopathologia 2001, 149, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.C.; Macher, J.M.; Hung, Y.-Y. Biodiversity and concentrations of airborne fungi in large US office buildings from the BASE study. Atmos. Environ. 2007, 41, 5181–5191. [Google Scholar] [CrossRef]
- Duncan, S.M.; Farrell, R.L.; Jordan, N.; Jurgens, J.A.; Blanchette, R.A. Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica. Polar Sci. 2010, 4, 275–283. [Google Scholar] [CrossRef]
- Nonnenmann, M.W.; Bextine, B.; Dowd, S.E.; Gilmore, K.; Levin, J.L. Culture-independent characterization of bacteria and fungi in a poultry bioaerosol using pyrosequencing: A new approach. J. Occup. Environ. Hyg. 2010, 7, 693–699. [Google Scholar] [CrossRef]
- Almaguer, M.; Aira, M.-J.; Rodríguez-Rajo, F.-J.; Rojas, T.-I. Study of airborne fungus spores by viable and non-viable methods in Havana, Cuba. Grana 2013, 52, 289–298. [Google Scholar] [CrossRef]
- Ahmed, J.; Hossain, K.; Bashar, M. Aeromycoflora of the Dhaka University campus. Bangladesh J. Bot. 2013, 42, 273–278. [Google Scholar] [CrossRef]
- Tikvesli, M.; Asan, A.; Gurcan, S.; Sen, B. Airborne fungal biodiversity in indoor and outdoor air of three mosques in Ederne City, Turkey. Fresenius Environ. Bull. 2018, 27, 5252–5258. [Google Scholar]
- Banchi, E.; Ametrano, C.G.; Tordoni, E.; Stanković, D.; Ongaro, S.; Tretiach, M.; Pallavicini, A.; Muggia, L.; Verardo, P.; Tassan, F.; et al. Environmental DNA assessment of airborne plant and fungal seasonal diversity. Sci. Total Environ. 2020, 738, 140249. [Google Scholar] [CrossRef]
- Ahirea, C.; Rajurkarb, S.; Jadhava, A.; Khedkarc, G. Biodiversity and concentration of air borne fungi in an open vegetable market area in Aurangabad. Wesley. J. Res. 2022, 15, 13–27. [Google Scholar]
- Ameen, M.K.M. Diversity of airborne fungi in cultured and urban sites in Basra Province, Iraq. Biodiversitas J. Biol. Divers. 2024, 25, 9. [Google Scholar] [CrossRef]
- Nannu Shankar, S.; Srinivasan, B.; Nyayiru Kannaian, U.P. Airborne Culturable Fungi in the Indoor and Outdoor Environments of Shrines in Chennai, India. Atmosphere 2024, 15, 754. [Google Scholar] [CrossRef]
- Grinshpun, S.A.; Buttner, M.P.; Mainelis, G.; Willeke, K. Sampling for airborne microorganisms. In Manual of Environmental Microbiology; Wiley: Hoboken, NJ, USA, 2016; pp. 3.2.2-1–3.2.2-17. [Google Scholar]
- Reponen, T.; Willeke, K.; Grinshpun, S.; Nevalainen, A. Biological particle sampling. In Aerosol Measurement: Principles, Techniques, and Applications; Wiley: Hoboken, NJ, USA, 2011; pp. 549–570. [Google Scholar]
- Sharma Ghimire, P.; Tripathee, L.; Chen, P.; Kang, S. Linking the conventional and emerging detection techniques for ambient bioaerosols: A review. Rev. Environ. Sci. Biotechnol. 2019, 18, 495–523. [Google Scholar] [CrossRef]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mainelis, G.; Willeke, K.; Adhikari, A.; Reponen, T.; Grinshpun, S.A. Design and Collection Efficiency of a New Electrostatic Precipitator for Bioaerosol Collection. Aerosol Sci. Technol. 2002, 36, 1073–1085. [Google Scholar] [CrossRef]
- Černá, K.; Wittlingerová, Z.; Zimova, M.; Janovský, Z. Methods of sampling airborne fungi in working environments of waste treatment facilities. Int. J. Occup. Med. Environ. Health 2015, 29, 493–502. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Teertstra, W.; Kegel, W.; Bilodeau Guillaume, J.; Wösten Han, A.B.; Duchaine, C. Recovery of Fungal Cells from Air Samples: A Tale of Loss and Gain. Appl. Environ. Microbiol. 2019, 85, e02941-18. [Google Scholar] [CrossRef]
- Pusz, W.; Urbaniak, J. Airborne fungi in Longyearbyen area (Svalbard, Norway)—Case study. Environ. Monit. Assess. 2021, 193, 290. [Google Scholar]
- Skjøth, C.; Petch, G. Sampling Strategy and Assessment Options for Environmental Antimicrobial Resistance in Airborne Microorganisms; Environment Agency: Bristol, UK, 2022.
- Scott, J.A.; Summerbell, R.C.; Green, B.J. Detection of Indoor Fungi Bioaerosols. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Wageningen Academic: Gelderland, The Netherlands, 2011; pp. 353–379. [Google Scholar]
- Levetin, E.; McLoud, J.D.; Pityn, P.; Rorie, A.C. Air sampling and analysis of aeroallergens: Current and future approaches. Curr. Allergy Asthma Rep. 2023, 23, 223–236. [Google Scholar] [CrossRef]
- Hyde, K.D.; Saleh, A.; Aumentado, H.D.R.; Boekhout, T.; Bera, I.; Khyaju, S.; Bhunjun, C.S.; Chethana, K.W.T.; Phukhamsakda, C.; Doilom, M.; et al. Fungal numbers: Global needs for a realistic assessment. Fungal Divers. 2024, 128, 191–225. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Fong, J.J.; Park, M.S.; Chang, L.; Lim, Y.W. Identifying airborne fungi in Seoul, Korea using metagenomics. J. Microbiol. 2014, 52, 465–472. [Google Scholar] [CrossRef]
- Shin, S.-K.; Kim, J.; Ha, S.-M.; Oh, H.-S.; Chun, J.; Sohn, J.; Yi, H. Metagenomic insights into the bio-aerosols in the indoor and outdoor environments of childcare facilities. PLoS ONE 2015, 10, e0126960. [Google Scholar]
- Gangneux, J.-P.; Sassi, M.; Lemire, P.; Le Cann, P. Metagenomic characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non-asthma patients using next generation sequencing. Front. Microbiol. 2020, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Brunner-Mendoza, C.; Calderón-Ezquerro, M.D.; Guerrero-Guerra, C.; Sanchez-Flores, A.; Salin-as-Peralta, I.; Toriello, C. Diversity and composition of the airborne fungal community in Mexico City with a metagenomic approach. Microorganisms 2024, 12, 2632. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Lei, L.; Duan, Y.; Zhang, K.-Q.; Yang, J. Culture-independent methods for studying environmental microorganisms: Methods, application, and perspective. Appl. Microbiol. Biotechnol. 2012, 93, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Behzad, H.; Gojobori, T.; Mineta, K. Challenges and opportunities of airborne metagenomics. Genome Biol. Evol. 2015, 7, 1216–1226. [Google Scholar] [CrossRef]
- Stępalska, D.; Wołek, J. Variation in fungal spore concentrations of selected taxa associated. Aerobiologia 2005, 21, 43–52. [Google Scholar] [CrossRef]
- Stępalska, D.; Wołek, J. Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia 2009, 25, 333–340. [Google Scholar] [CrossRef]
- Golan, J.J.; Pringle, A. Long-distance dispersal of fungi. Microbiol. Spectr. 2017, 5, 24. [Google Scholar] [CrossRef]
- Savage, D.; Barbetti, M.J.; MacLeod, W.J.; Salam, M.U.; Renton, M. Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal. Microb. Ecol. 2012, 63, 578–585. [Google Scholar]
- Górny, R.L.; Reponen, T.; Willeke, K.; Schmechel, D.; Robine, E.; Boissier, M.; Grinshpun, S.A. Fungal fragments as indoor air biocontaminants. Appl. Environ. Microbiol. 2002, 68, 3522–3531. [Google Scholar] [CrossRef]
- Lymperopoulou, D.S.; Adams, R.I.; Lindow, S.E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 2016, 82, 3822–3833. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Liu, Z.; Rodríguez-Hernández, M.; Knight, R.; Henn, M.; Hernandez, M.T. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microbiol. 2008, 74, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A.; Vahteristo, M.; Meklin, T.; Jantunen, M.; Nevalainen, A.; Moschandreas, D. Temporal and Spatial Variation of Fungal Concentrations in Indoor Air. Aerosol Sci. Technol. 2001, 35, 688–695. [Google Scholar] [CrossRef]
- Almaguer, M.; Aira, M.-J.; Rodríguez-Rajo, F.J.; Rojas, T.I. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: Influence of meteorological parameters. Int. J. Biometeorol. 2014, 58, 1459–1470. [Google Scholar] [CrossRef]
- Pan, Y.; Luo, L.; Xiao, H.; Zhu, R.; Xiao, H. Spatial variability of inhalable fungal communities in airborne PM2.5 across Nanchang, China. Sci. Total Environ. 2020, 746, 141171. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, X.; Pecoraro, L. Environmental Factors Shaping the Diversity and Spatial-Temporal Distribution of Indoor and Outdoor Culturable Airborne Fungal Communities in Tianjin University Campus, Tianjin, China. Front. Microbiol. 2022, 13, 928921. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, F.; He, D.; Gu, J.-D.; Feng, H.; Chen, T.; Liu, G.; Wang, W. Diversity and spatial–temporal distribution of airborne fungi at the world culture heritage site Maijishan Grottoes in China. Aerobiologia 2021, 37, 681–694. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Feng, X.; Xu, J.; Chen, Z.; Luo, X.-S. The spatiotemporal distribution characteristics and influencing factors of airborne microbial components in ambient PM2.5 within a city scale. Environ. Res. 2025, 278, 121677. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y.; Xie, W.; Lu, R.; Mu, F.; Bai, W.; Du, S. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 2020, 708, 135027. [Google Scholar] [CrossRef]
- Flannigan, B.; Miller, J.D. Humidity and fungal contaminants. In Proceedings, Bugs, Mold & Rot II; National Institute of Building Sciences: Washington, DC, USA, 1993. [Google Scholar]
- Jabeen, R.; Kizhisseri, M.I.; Mayanaik, S.; Mohamed, M.M. Bioaerosol assessment in indoor and outdoor environments: A case study from India. Sci. Rep. 2023, 13, 18066. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Z.; Li, G.; An, T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. Environ. Int. 2024, 190, 108857. [Google Scholar] [CrossRef]
- Shourie, A.; Girdhar, A.; Singhal, K.; Rawat, C.; Chapadgaonkar, S.S. Biocontaminants in Indoor Environments: Occurrence, Spread, and Prevention. In Airborne Biocontaminants and Their Impact on Human Health; Wiley: Hoboken, NJ, USA, 2024; pp. 1–25. [Google Scholar]
- Rai, S.; Singh, D.K.; Kumar, A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J. Basic Microbiol. 2021, 61, 267–292. [Google Scholar] [CrossRef]
- Salonen, H.; Duchaine, C.; Mazaheri, M.; Clifford, S.; Lappalainen, S.; Reijula, K.; Morawska, L. Airborne viable fungi in school environments in different climatic regions—A review. Atmos. Environ. 2015, 104, 186–194. [Google Scholar] [CrossRef]
- Pollegioni, P.; Mattioni, C.; Ristorini, M.; Occhiuto, D.; Canepari, S.; Korneykova, M.V.; Gavrichkova, O. Diversity and source of airborne microbial communities at differential polluted sites of Rome. Atmosphere 2022, 13, 224. [Google Scholar] [CrossRef]
- Gashi, N.; Szőke, Z.; Fauszt, P.; Dávid, P.; Mikolás, M.; Gál, F.; Stündl, L.; Remenyik, J.; Paholcsek, M. Bioaerosols in agriculture: A comprehensive approach for sustainable crop health and environmental balance. Agronomy 2025, 15, 1003. [Google Scholar] [CrossRef]
- Ziaee, A.; Zia, M.; Goli, M. Identification of saprophytic and allergenic fungi in indoor and outdoor environments. Environ. Monit. Assess. 2018, 190, 574. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaarani, A.A.; Pecoraro, L. A review of pathogenic airborne fungi and bacteria: Unveiling occurrence, sources, and profound human health implication. Front. Microbiol. 2024, 15, 1428415. [Google Scholar] [CrossRef]
- Al Hallak, M.; Verdier, T.; Bertron, A.; Roques, C.; Bailly, J.-D. Fungal contamination of building materials and the aerosolization of particles and toxins in indoor air and their associated risks to health: A review. Toxins 2023, 15, 175. [Google Scholar] [CrossRef]
- Belizario, J.A.; Lopes, L.G.; Pires, R.H. Fungi in the indoor air of critical hospital areas: A review. Aerobiologia 2021, 37, 379–394. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Escámez, P.S.F.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Guidance on the requirements for the development of microbiological criteria. EFSA J. 2017, 15, e05052. [Google Scholar] [CrossRef]
- Er, C.M.; Sunar, N.; Leman, A.M.; Othman, N.; Emparan, Q.; Parjo, U.; Gani, P.; Jamal, N.; Ideris, N.A. The evaluation of indoor microbial air quality in two new commissioning higher educational buildings in Johor, Malaysia. Appl. Mech. Mater. 2015, 773, 1068–1072. [Google Scholar] [CrossRef]
- Shin, S.; Yoon, W.S.; Lee, H.S.; Jo, J.H.; Byeon, S.-H. Airborne concentrations of bacteria and mold in Korean public-use facilities: Measurement, systematic review, meta-analysis, and probabilistic human inhalation risk assessment. Environ. Sci. Pollut. Res. 2024, 31, 54854–54872. [Google Scholar] [CrossRef] [PubMed]
- Semerjian, L.; Al-Bardan, M.; Kassar, M.G.A. Assessment of water quality variations from mains to building storage tanks in Sharjah, United Arab Emirates. Environ. Monit. Assess. 2021, 193, 629. [Google Scholar] [CrossRef] [PubMed]
- Heseltine, E.; Rosen, J. WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO: Geneva, Switzerland, 2009.
- Caillaud, D.; Leynaert, B.; Keirsbulck, M.; Nadif, R. Indoor mould exposure, asthma and rhinitis: Findings from systematic reviews and recent longitudinal studies. Eur. Respir. Rev. 2018, 27, 170137. [Google Scholar] [CrossRef]
- Schmitt, P.; Duval, A.; Camus, M.; Lefrançais, E.; Roga, S.; Dedieu, C.; Ortega, N.; Bellard, E.; Mirey, E.; Mouton-Barbosa, E.; et al. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J. Exp. Med. 2024, 221, e20231236. [Google Scholar] [CrossRef]
- Jaakkola, M.S.; Quansah, R.; Hugg, T.T.; Heikkinen, S.A.M.; Jaakkola, J.J.K. Association of indoor dampness and molds with rhinitis risk: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 2013, 132, 1099–1110.e18. [Google Scholar] [CrossRef]
- Torres, M.I.; Gil-Mata, S.; Bognanni, A.; Ferreira-da-Silva, R.; Yepes-Nuñez, J.J.; Lourenço-Silva, N.; Cardoso-Fernandes, A.; Ferreira, A.; Ferreira-Cardoso, H.; Portela, D.; et al. Intranasal versus oral treatments for allergic rhinitis: A systematic review with meta-analysis. J. Allergy Clin. Immunol. Pract. 2024, 12, 3404–3418. [Google Scholar] [CrossRef]
- Kuna, P.; Kaczmarek, J.; Kupczyk, M. Efficacy and safety of immunotherapy for allergies to Alternaria alternata in children. J. Allergy Clin. Immunol. 2011, 127, 502–508.e6. [Google Scholar] [CrossRef]
- Varga, M.K.; Moshammer, H.; Atanyazova, O. Childhood asthma and mould in homes—A meta-analysis. Wien. Klin. Wochenschr. 2025, 137, 79–88. [Google Scholar] [CrossRef]
- Sauvere, M.; Lejeune, S.; Chagnon, F.; Drumez, E.; Cisterne, C.; Mordacq, C.; Thumerelle, C.; Scalbert, M.; Le Mee, A.; Amani, M.; et al. Home exposure to moisture and mold is associated with poorer asthma control in children: CHAMPIASTHMA study. J. Allergy Clin. Immunol. Glob. 2025, 4, 100415. [Google Scholar] [CrossRef]
- Rhyou, H.-I.; Kim, T.-B.; Yoon, S.-Y.; Kwon, J.-W.; Park, H.-K.; Kim, S.-R.; Nam, Y.-H.; Kim, J.-H.; Cho, Y.-J.; Yoon, H.J.; et al. Prevalence and Clinical Characteristics of Severe Asthma with Fungal Sensitization in Korea. Allergy Asthma Immunol. Res. 2025, 17, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Ko, M.-K.; Park, S.H.; Hwang, S.Y.; Kim, D.H.; Park, S.Y.; Ko, Y.J.; Kim, S.M.; Park, J.H.; Lee, M.J. Dectin-1 signaling coordinates innate and adaptive immunity for potent host defense against viral infection. Front. Immunol. 2023, 14, 1194502. [Google Scholar] [CrossRef] [PubMed]
- Rufino de Sousa, N.; Steponaviciute, L.; Margerie, L.; Nissen, K.; Kjellin, M.; Reinius, B.; Salaneck, E.; Udekwu, K.I.; Rothfuchs, A.G. Detection and isolation of airborne SARS-CoV-2 in a hospital setting. Indoor Air 2022, 32, e13023. [Google Scholar] [CrossRef] [PubMed]
- Palaty, C. Mould Remediation in Indoor Environments—Review of Guidelines & Evidence; Metaphase National Collaborating Centre for Environemtnal Health: Vancouver, BC, USA, 2010. [Google Scholar]
- Lee, E.; Lee, S.-Y.; Kim, H.-B.; Yang, S.-I.; Yoon, J.; Suh, D.I.; Oh, H.Y.; Ahn, K.; Kim, K.W.; Shin, Y.H.; et al. Insights from the COCOA birth cohort: The origins of childhood allergic diseases and future perspectives. Allergol. Int. 2024, 73, 3–12. [Google Scholar] [CrossRef]
- Cai, J.; Yang, M.; Zhang, N.; Chen, Y.; Wei, J.; Wang, J.; Liu, Q.; Li, W.; Shi, W.; Liu, W. Effects of residential damp indicators on asthma, rhinitis, and eczema among children: A systematic review and meta-analysis of the literature in the past 33 years. Build. Environ. 2024, 251, 111226. [Google Scholar] [CrossRef]
- Torres, T.; Ferreira, E.O.; Gonçalo, M.; Mendes-Bastos, P.; Selores, M.; Filipe, P. Update on atopic dermatitis. Acta Medica Port. 2019, 32, 606–613. [Google Scholar] [CrossRef]
- Hamblin, M.; Prosch, H.; Vašáková, M. Diagnosis, course and management of hypersensitivity pneumonitis. Eur. Respir. Rev. 2022, 31, 210169. [Google Scholar] [CrossRef]
- Anwar, J.; Kong, W.T.; Balakrishnan, B. Updates in hypersensitivity pneumonitis: A narrative review. Curr. Pulmonol. Rep. 2022, 11, 106–115. [Google Scholar] [CrossRef]
- Gomes, M.L.; Morais, A.; Rufo, J.C. The association between fungi exposure and hypersensitivity pneumonitis: A systematic review. Porto Biomed. J. 2021, 6, e117. [Google Scholar] [CrossRef]
- Shin, S.-H.; Ye, M.-K.; Lee, D.-W.; Geum, S.-Y. Immunopathologic role of fungi in chronic rhinosinusitis. Int. J. Mol. Sci. 2023, 24, 2366. [Google Scholar] [CrossRef]
- Deutsch, P.G.; Whittaker, J.; Prasad, S. Invasive and non-invasive fungal rhinosinusitis—A review and update of the evidence. Medicina 2019, 55, 319. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; Simpson, C.A.; Yang, H.H.; Suh, J.D.; Wang, M.B.; Lagishetty, V.; Liang, F.; Jacobs, J.P. Fungal and bacterial microbiome in sinus mucosa of patients with and without chronic rhinosinusitis. Laryngoscope 2024, 134, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough? Archit. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef]
- Nag, P.K. Sick building syndrome and other building-related illnesses. In Office Buildings: Health, Safety and Environment; Springer: Singapore, 2019; pp. 53–103. [Google Scholar]
- Piecková, E. Adverse health effects of indoor moulds. Arch. Ind. Hyg. Toxicol. 2012, 63, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Laumbach, R.J.; Kipen, H.M. Bioaerosols and sick building syndrome: Particles, inflammation, and allergy. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 135–139. [Google Scholar] [CrossRef]
- Cooley, J.D.; Wong, W.C.; Jumper, C.A.; Straus, D.C. Correlation between the prevalence of certain fungi and sick building syndrome. Occup. Environ. Med. 1998, 55, 579–584. [Google Scholar] [CrossRef]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Douwes, J.; Sigsgaard, T.; Bønløkke, J.; Roponen, M. Health effects associated with dampness and mould. In WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO: Geneva, Switzerland, 2009; pp. 63–92. [Google Scholar]
- Hoxha, M.; Abbasciano, M.; Avantaggiato, G.; Zappacosta, B.; Tricarico, D. Mycotoxins and neuropsychiatric symptoms: Possible role in special refugee populations. Front. Pharmacol. 2025, 16, 1524152. [Google Scholar] [CrossRef]
- Abia, W.A.; Foupouapouognigni, Y.; Nfombouot, H.P.N.; Ngoungoure, L.V.N.; Ntungwe, E.N.; Salah-Abbès, J.B.; Tchana, A.N. A scoping review on mycotoxin-induced neurotoxicity. Discov. Toxicol. 2025, 2, 1. [Google Scholar] [CrossRef]
- Harding, C.F.; Liao, D.; Persaud, R.; DeStefano, R.A.; Page, K.G.; Stalbow, L.L.; Roa, T.; Ford, J.C.; Goman, K.D.; Pytte, C.L. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav. Brain Res. 2023, 442, 114294. [Google Scholar] [CrossRef]
- Kuć-Szymanek, A.; Kubik-Machura, D.; Kościelecka, K.; Męcik-Kronenberg, T.; Radko, L. Neuro-toxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins 2025, 17, 24. [Google Scholar] [CrossRef]
- Pavan, R.; Manjunath, K. Qualitative Analysis of Indoor and Outdoor Airborne Fungi in Cowshed. J. Mycol. 2014, 2014, 985921. [Google Scholar] [CrossRef]
- Awad, A.H.A. Vegetation: A source of air fungal bio-contaminant. Aerobiologia 2005, 21, 53–61. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Tormo-Molina, R.; Maya-Manzano, J.M.; Silva-Palacios, I.; Gonza-lo-Garijo, Á. Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecol. 2014, 7, 16–26. [Google Scholar] [CrossRef]
- Shan, Y.; Wu, W.; Fan, W.; Haahtela, T.; Zhang, G. House dust microbiome and human health risks. Int. Microbiol. 2019, 22, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bush, R.K.; Portnoy, J.M. The role and abatement of fungal allergens in allergic diseases. J. Allergy Clin. Immunol. 2001, 107, S430–S440. [Google Scholar] [CrossRef] [PubMed]
- Sandona, K.; Billingsley Tobias, T.L.; Hutchinson, M.I.; Natvig, D.O.; Porras-Alfaro, A. Diversity of thermophilic and thermotolerant fungi in corn grain. Mycologia 2019, 111, 719–729. [Google Scholar] [CrossRef]
- Eduard, W. Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit. Rev. Toxicol. 2009, 39, 799–864. [Google Scholar] [CrossRef]
- Zhang, Z.; Reponen, T.; Hershey, G.K.K. Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms. Curr. Allergy Asthma Rep. 2016, 16, 86. [Google Scholar]
- Mari, A.; Schneider, P.; Wally, V.; Breitenbach, M.; Simon-Nobbe, B. Sensitization to fungi: Epidemiology, comparative skin tests, and IgE reactivity of fungal extracts. Clin. Exp. Allergy 2003, 33, 1429–1438. [Google Scholar] [CrossRef]
- Rindsjö, E.; Scheynius, A. Mechanisms of IgE-mediated allergy. Exp. Cell Res. 2010, 316, 1384–1389. [Google Scholar]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Olsen, Y.; Arildskov, E.; Hansen, S.N.; Pedersen, M.; Dharmage, S.C.; Kloster, M.; Sigsgaard, T. Outdoor Al-ternaria and Cladosporium spores and acute asthma. Clin. Exp. Allergy 2023, 53, 1256–1267. [Google Scholar] [CrossRef]
- De Linares, C.; Navarro, D.; Puigdemunt, R.; Belmonte, J. Aspergillus conidia and allergens in outdoor environment: A Health Hazard? J. Fungi 2023, 9, 624. [Google Scholar] [CrossRef]
- Yarahmadi, M.; Sepahvand, A.; Hashemi, S.J.; Fiore, M.; Baboli, Z.; Fouladi-Fard, R. Identification of airborne Penicillium and their association with outdoor air quality in a middle Eastern city. Aerobiologia 2025, 41, 245–261. [Google Scholar] [CrossRef]
- Fukutomi, Y.; Taniguchi, M. Sensitization to fungal allergens: Resolved and unresolved issues. Allergol. Int. 2015, 64, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, A.E.W.; Borish, L.; Gurrola, J.; Payne, S. Allergic fungal rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2016, 4, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Katzenstein, A.-L.A.; Sale, S.R.; Greenberger, P.A. Allergic Aspergillus sinusitis: A newly recognized form of sinusitis. J. Allergy Clin. Immunol. 1983, 72, 89–93. [Google Scholar] [CrossRef]
- Kustrzeba-Wójcicka, I.; Siwak, E.; Terlecki, G.; Wolańczyk-Mędrala, A.; Mędrala, W. Alternaria alternata and Its Allergens: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2014, 47, 354–365. [Google Scholar] [CrossRef]
- Abel-Fernández, E.; Martínez, M.J.; Galán, T.; Pineda, F. Going over fungal allergy: Alternaria alternata and its allergens. J. Fungi 2023, 9, 582. [Google Scholar] [CrossRef]
- Singh, V. Fungal Rhinosinusitis: Unravelling the disease spectrum. J. Maxillofac. Oral Surg. 2019, 18, 164–179. [Google Scholar] [CrossRef]
- Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W.; Barnes, C.; Baxi, S.; Environmental Allergens Workgroup. Exposure and Health Effects of Fungi on Humans. J. Allergy Clin. Immunol. Pract. 2016, 4, 396–404. [Google Scholar] [CrossRef]
- Agarwal, R.; Muthu, V.; Sehgal, I.S. Relationship between Aspergillus and asthma. Allergol. Int. 2023, 72, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Panjabi, C. Allergic aspergillosis of the respiratory tract. Eur. Respir. Rev. 2014, 23, 8–29. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.S.; Khurana Hershey, G.K. Indoor and outdoor fungal allergens and impacts on respiratory allergic disease. J. Allergy Clin. Immunol. Pract. 2025, 13, 1267–1271. [Google Scholar] [PubMed]
- Singh, N.; Paterson David, L. Aspergillus Infections in Transplant Recipients. Clin. Microbiol. Rev. 2005, 18, 44–69. [Google Scholar] [CrossRef]
- O’Gorman, C.M. Airborne Aspergillus fumigatus conidia: A risk factor for aspergillosis. Fungal Biol. Rev. 2011, 25, 151–157. [Google Scholar] [CrossRef]
- Dacey, S.; Velu, P.S.; Wilson, N.; Levi, J.R.; Paz-Lansberg, M. Invasive fungal sinusitis: A comparison of pediatric versus adult cases. Am. J. Otolaryngol. 2024, 45, 104143. [Google Scholar] [CrossRef]
- Schubert, M.S.; Goetz, D.W. Evaluation and treatment of allergic fungal sinusitis. II. Treatment and follow-up. J. Allergy Clin. Immunol. 1998, 102, 395–402. [Google Scholar] [CrossRef]
- Dagenais Taylor, R.T.; Keller Nancy, P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef]
- Costabel, U.; Miyazaki, Y.; Pardo, A.; Koschel, D.; Bonella, F.; Spagnolo, P.; Guzman, J.; Ryerson, C.J. Hypersensitivity pneumonitis. Nat. Rev. Dis. Primers 2020, 6, 65. [Google Scholar]
- Selman, M.; Lacasse, Y.; Pardo, A.; Cormier, Y. Hypersensitivity pneumonitis caused by fungi. Proc. Am. Thorac. Soc. 2010, 7, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, N.; Patel, G.; Greenberger, P. Hypersensitivity pneumonitis due to an outdoor antigen in the home. Ann. Allergy Asthma Immunol. 2018, 121 (Suppl. 5), S91. [Google Scholar] [CrossRef]
- Vasakova, M.; Morell, F.; Walsh, S.; Leslie, K.; Raghu, G. Hypersensitivity Pneumonitis: Perspectives in Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2017, 196, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Gadre, A.; Enbiale, W.; Andersen, L.K.; Coates, S.J. The effects of climate change on fungal diseases with cutaneous manifestations: A report from the International Society of Dermatology Climate Change Committee. J. Clim. Change Health 2022, 6, 100156. [Google Scholar] [CrossRef]
- Cheng, S.C.-H.; Lin, Y.-Y.; Kuo, C.-N.; Lai, L.-J. Cladosporium keratitis—A case report and literature review. BMC Ophthalmol. 2015, 15, 106. [Google Scholar] [CrossRef]
- Žilka, M.; Hrabovský, M.; Dušička, J.; Zahradníková, E.; Gahurová, D.; Ščevková, J. Comparative analysis of airborne fungal spore distribution in urban and rural environments of Slovakia. Environ. Sci. Pollut. Res. 2024, 31, 63145–63160. [Google Scholar] [CrossRef]
- Karabıcak, S.; Bıyıklıoğlu, O.; Farooq, Q.; Oteros, J.; Galán, C.; Çeter, T. Investigating the relationship between atmospheric concentrations of fungal spores and local meteorological variables in Kastamonu, Türkiye. Aerobiologia 2025, 41, 289–301. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Bosiacka, B.; Bednarz, A.; Wolski, T. A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia 2018, 34, 45–54. [Google Scholar] [CrossRef]
- Oliveira, M.; Ribeiro, H.; Delgado, J.; Abreu, I. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int. J. Biometeorol. 2009, 53, 61–73. [Google Scholar] [CrossRef]
- Mihai, F.-C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic pollution, waste management issues, and circular economy opportunities in rural communities. Sustainability 2021, 14, 20. [Google Scholar] [CrossRef]
- Mancino, G.; Console, R.; Greco, M.; Iacovino, C.; Trivigno, M.L.; Falciano, A. Assessing vegetation decline due to pollution from solid waste management by a multitemporal remote sensing approach. Remote Sens. 2022, 14, 428. [Google Scholar] [CrossRef]
- Memon, R.; Niazi, J.H.; Qureshi, A. Biosensors for detection of airborne pathogenic fungal spores: A review. Nanoscale 2024, 16, 15419–15445. [Google Scholar] [CrossRef]
- Hernandez, H.; Martinez, L.R. Relationship of environmental disturbances and the infectious potential of fungi. Microbiology 2018, 164, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Grinn-Gofroń, A.; Bosiacka, B. Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia 2015, 31, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, A.-L.; Kasanen, J.-P.; Rautiala, S.; Ikäheimo, M.; Rantamäki, J.; Kääriäinen, H.; Kalliokoski, P. Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. Int. Biodeterior. Biodegrad. 2000, 46, 117–127. [Google Scholar] [CrossRef]
- Airaksinen, M.; Kurnitski, J.; Pasanen, P.; Seppanen, O. Fungal spore transport through a building structure. Indoor Air 2004, 14, 92–104. [Google Scholar] [CrossRef]
- Tselepi, V.; Sarkiris, P.; Nioras, D.; Tsouko, E.; Sarris, D.; Gogolides, E.; Ellinas, K. Functional surfaces for passive fungal proliferation control: Effect of surface micro-and nanotopography, material, and wetting properties. ACS Appl. Bio Mater. 2024, 7, 4510–4518. [Google Scholar] [CrossRef]
- Xue, Y.; Fan, Y.; Wang, Z.; Gao, W.; Sun, Z.; Ge, J. Facilitator of moisture accumulation in building envelopes and its influences on condensation and mould growth. Energy Build. 2022, 277, 112528. [Google Scholar] [CrossRef]
- Alfano, F.R.D.A.; Palella, B.I.; Riccio, G. Moisture in historical buildings from causes to the application of specific diagnostic methodologies. J. Cult. Herit. 2023, 61, 150–159. [Google Scholar] [CrossRef]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef]
- Vadamalraj, N.; Zingre, K.; Seshadhri, S.; Arjunan, P.; Srinivasan, S. Hybrid ventilation system and soft-sensors for maintaining indoor air quality and thermal comfort in buildings. Atmosphere 2020, 11, 110. [Google Scholar] [CrossRef]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Klemczak, B.; Kucharczyk-Brus, B.; Sulimowska, A.; Radziewicz-Winnicki, R. Historical evolution and current developments in building thermal insulation materials—A review. Energies 2024, 17, 5535. [Google Scholar] [CrossRef]
- Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L.C.; Morawska, L.; Mazaheri, M.; Kumar, P. Smart homes and the control of indoor air quality. Renew. Sustain. Energy Rev. 2018, 94, 705–718. [Google Scholar] [CrossRef]
- Hojnik, N.A.; Modic, M.; Ni, Y.; Filipič, G.; Cvelbar, U.; Walsh, J.L. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 2019, 53, 1893–1904. [Google Scholar] [CrossRef]
- Khan, A.H.; Karuppayil, S.M. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci. 2012, 19, 405–426. [Google Scholar] [CrossRef]
- Ponce-Caballero, C.; Gamboa-Marrufo, M.; López-Pacheco, M.; Cerón-Palma, I.; Quintal-Franco, C.; Giácoman-Vallejos, G.; Loría-Arcila, J. Seasonal variation of airborne fungal propagules indoor and outdoor of domestic environments in Mérida, Mexico. Atmósfera 2013, 26, 369–377. [Google Scholar] [CrossRef]
- Ouyang, H.; Wang, L.; Sapkota, D.; Yang, M.; Morán, J.; Li, L.; Olson, B.A.; Schwartz, M.; Hogan, C.J.; Torremorell, M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: A review of established and emerging approaches. Front. Vet. Sci. 2023, 10, 1291312. [Google Scholar] [CrossRef]
- Kujundzic, E.; Matalkah, F.; Howard, C.J.; Hernandez, M.; Miller, S.L. UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacterial and fungal spores. J. Occup. Environ. Hyg. 2006, 3, 536–546. [Google Scholar] [CrossRef]
- Ruiz-Camps, I.; Aguado, J.; Almirante, B.; Bouza, E.; Ferrer-Barbera, C.; Len, O.; Lopez-Cerero, L.; Tudela, R.; Rodríguez-Tudela, J.L.; Ruiz, M.; et al. Guidelines for the prevention of invasive mould diseases caused by filamentous fungi by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Clin. Microbiol. Infect. 2011, 17, 1–24. [Google Scholar] [CrossRef]
- Gao, M.; Yu, A.; Chen, M.; Qiu, T.; Guo, Y.; Sun, X.; Wang, X. Airborne fungi and human exposure in different areas of composting facilities. Ecotoxicol. Environ. Saf. 2022, 243, 113991. [Google Scholar] [CrossRef] [PubMed]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Shaughnessy, R.; Haverinen-Shaughnessy, U.; Kwan, T.A.; Peccia, J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air. Build. Environ. 2020, 177, 106800. [Google Scholar] [CrossRef]
- Vornanen-Winqvist, C.; Järvi, K.; Toomla, S.; Ahmed, K.; Andersson, M.A.; Mikkola, R.; Marik, T.; Kredics, L.; Salonen, H.; Kurnitski, J. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems. Int. J. Environ. Res. Public Health 2018, 15, 230. [Google Scholar] [CrossRef]
- Bayer, C.W.; Grimes, C. The Indoor Environmental Microbiome; SAGE Publications: London, UK, 2015; pp. 1035–1037. [Google Scholar]
- Cabral, J.P.S. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci. Total Environ. 2010, 408, 4285–4295. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Calheiros, C.S.C.; Villanueva, F.; Alonso-Cuevilla, N.P.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality: A Review of Cleaning Technologies. Environments 2022, 9, 118. [Google Scholar] [CrossRef]
- BK, S.; Haddad, K.; Jafar, R.; Lannon, S. An overlooked issue for healthier homes. Welsh Hous. Q. 2025, 138, 46–49. [Google Scholar]
- Watt, D.S. Building Pathology: Principles and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2025. [Google Scholar]
- IAQ. Moisture Control Guidance for Building Design, Construction and Maintenance; U.S. Environmental Protection Agency: Washington, DC, USA, 2013.
- Stout, J.; Stout, R. Healthier Homes: A Blueprint for Creating a Toxin-Free Living Environment; Victory Belt Publishing: Las Vegas, NV, USA, 2022. [Google Scholar]
- Cheong, C.D.; Neumeister-Kemp, H. Cleaning intervention study: Reducing airborne indoor fungi and fine particulates in carpeted Australian homes using intensive, high efficiency HEPA vacuuming. J. Environ. Health Res. 2005, 4, 3–16. [Google Scholar]
- Recer, G.M. Long-term use of high-efficiency vacuum cleaners and residential airborne fun-gal-spore exposure. Aerobiologia 2004, 20, 179–190. [Google Scholar] [CrossRef]
- Clancy, J.H.; Markey, E.; Martínez-Bracero, M.; Maya-Manzano, J.M.; McGillicuddy, E.J.; Sewell, G.; Sarda-Estève, R.; Baisnée, D.; Vélez-Pereira, A.M.; Davis, G.; et al. Comparative Analysis of Real-Time Fluorescence-Based Spectroscopic Instruments: Bioaerosol Detection in the Urban Environment of Dublin City, Ireland. Atmosphere 2025, 16, 275. [Google Scholar]
- Bruffaerts, N.; Graf, E.; Matavulj, P.; Tiwari, A.; Pyrri, I.; Zeder, Y.; Erb, S.; Plaza, M.; Dietler, S.; Bendinelli, T.; et al. Advancing automated identification of airborne fungal spores: Guidelines for cultivation and reference dataset creation. Aerobiologia 2025, 41, 505–525. [Google Scholar] [CrossRef]
- Ren, R.; Tan, W.; Chen, S.; Xu, X.; Zhang, D.; Chen, P.; Zhu, M. Deep learning application to hyphae and spores identification in fungal fluorescence images. Sci. Rep. 2025, 15, 27222. [Google Scholar] [CrossRef]
- Fidan, F.; Çelik, F.E.; Hancı, N.B.; Erdem, O.; Çetinkaya, E.; Güdücüoğlu, H. (Eds.) Artificial Intelligence-Based Analysis of Microscopic Images of Dermatophyte Fungi. In Proceedings of the 2025 33rd Signal Processing and Communications Applications Conference (SIU), Sile, Türkiye, 25–28 June 2025; IEEE: New York, NY, USA, 2025. [Google Scholar]
- Naranjo-Orrico, D.; Ovaskainen, O.; Furneaux, B.; Purhonen, J.; Arancibia, P.; Burg, S.; Moser, N.; Niku, J.; Tikhonov, G.; Zakharov, E.; et al. Wind Is a Primary Driver of Fungal Dispersal Across a Mainland-Island System. Mol. Ecol. 2025, 34, e17675. [Google Scholar] [CrossRef]
- Sutanto, H.; Fetarayani, D. Harnessing Neural Networks for Food Allergy Diagnosis, Management, and Research: A Review of Current Applications and Future Prospects. Curr. Treat. Options Allergy 2025, 12, 16. [Google Scholar] [CrossRef]




| Country | Guideline Issued/Threshold for Airborne Fungi (CFU/m3) | Conditions | References | 
|---|---|---|---|
| Brazil | ~750 | Indoor fungal contamination; recommended value | Belizario, Lopes [71] | 
| Canada | ~150 | Limit value for indoor air in hospital critical areas | Belizario, Lopes [71] | 
| European Commission | <500 | Intermediate contamination level; above that is higher risk | Hazards, Ricci [72] | 
| Malaysia | ~1000 | Mold, mixture of species | Er, Sunar [73] | 
| South Korea | ~500 | For mold in indoor air; mixture of species | Shin, Yoon [74] | 
| United Arab Emirates | ~500 | Mold guidelines | Semerjian, Al-Bardan [75] | 
| WHO/Expert group | ≤1000 | For total microbial concentration indoors | Heseltine and Rosen [76] | 
| Fungal Genus | Typical Morphology | Main Source | Health Effect | Traditional ID Challenge | AI Application Example | 
|---|---|---|---|---|---|
| Alternaria | Large, club-shaped conidia | Plants/Soil | Severe allergy, asthma | Overlap with Ulocladium | CNN classification | 
| Cladosporium | Dark, septate conidia | Decay/Leaves | Allergic rhinitis | High in air, small size | SVM with imaging | 
| Aspergillus | Small, round conidia | Compost, dust | Asthma, aspergillosis | Mixed with Penicillium | Deep neural networks | 
| Penicillium | Brush-shaped conidia | Indoor, food | Indoor allergies | Confused with Aspergillus | Random forest, SVM | 
| Stachybotrys | Black, chain/cluster | Damp walls | Sick building syndrome | Rare, hard to isolate | Feature-based learning | 
| Fusarium | Sickle-shaped, colored | Crops/Soil | Rare infection | Low abundance | Hybrid AI models | 
| Task Type | Input Data Type | AI/ML Approach | Output | Benefit | Key Limitation | 
|---|---|---|---|---|---|
| Spore ID | Micrographs | CNN, SVM, RF | Species label, count | Automation, accuracy | Needs annotated data | 
| Image Segmentation | Raw image stacks | U-Net, Mask R-CNN | Spore boundaries | Reliable quantitation | GPU needed, complexity | 
| Abundance Forecast | Weather + spore ct. | RNN, Time Series | Daily spore levels | Real-time alerts | Model drift | 
| Dispersion Mapping | Spatial data | Ensemble, Kriging | Risk heatmap | Spatial targeting | Data sparsity | 
| Health Impact Correlation | Clinical + air data | Decision trees, Regression | Allergy event risk | Preventive action | Data privacy, lag | 
| Explainability | Model decisions | SHAP, LIME | Feature attribution | Trust, regulatory | Interpretation skills | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kour, D.; Khan, S.S.; Gusain, M.; Bassi, A.; Kaur, T.; Kataria, A.; Kaur, S.; Kour, H. Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology. Aerobiology 2025, 3, 10. https://doi.org/10.3390/aerobiology3040010
Kour D, Khan SS, Gusain M, Bassi A, Kaur T, Kataria A, Kaur S, Kour H. Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology. Aerobiology. 2025; 3(4):10. https://doi.org/10.3390/aerobiology3040010
Chicago/Turabian StyleKour, Divjot, Sofia Sharief Khan, Meenakshi Gusain, Akshara Bassi, Tanvir Kaur, Aman Kataria, Simranjeet Kaur, and Harpreet Kour. 2025. "Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology" Aerobiology 3, no. 4: 10. https://doi.org/10.3390/aerobiology3040010
APA StyleKour, D., Khan, S. S., Gusain, M., Bassi, A., Kaur, T., Kataria, A., Kaur, S., & Kour, H. (2025). Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology. Aerobiology, 3(4), 10. https://doi.org/10.3390/aerobiology3040010
 
        


 
       