Biological Characterisation of Hailstones from Two Storms in South Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Hailstones Collection and Physical Analysis
2.3. Biological Characterisation of Hailstones
2.4. Atmospheric Air Mass Trajectories and Hailstorms—HYSPLIT Model
2.5. Statistical Analysis
3. Results
3.1. Hailstones Morphology
3.2. Hailstones Microbiological Composition
3.3. HYSPLIT Modelling
4. Discussion
4.1. Hailstones Morphology
4.2. Hailstones Microbiological Composition
4.3. HYSPLIT Modelling and Microbial Load of Hailstones
4.4. Importance of Biological Ice Nucleation for Hailstone Formation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Möhler, O.; DeMott, P.J.; Vali, G.; Levin, Z. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences 2007, 4, 1059–1071. [Google Scholar] [CrossRef]
- Covert, D.S.; Charlson, R.J.; Ahlquist, N.C. A Study of the Relationship of Chemical Composition and Humidity to Light Scattering by Aerosols. J. Appl. Meteorol. 1972, 11, 968–976. [Google Scholar] [CrossRef]
- Buseck, P.R.; Pósfai, M. Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. USA 1999, 96, 3372–3379. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.; Kasper-Giebl, A.; Löflund, M.; Giebl, H.; Hitzenberger, R.; Zibuschka, F.; Puxbaum, H. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 2002, 64, 109–119. [Google Scholar] [CrossRef]
- Bauer, H.; Giebl, H.; Hitzenberger, R.; Kasper-Giebl, A.; Reischl, G.; Zibuschka, F.; Puxbaum, H. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. Atmos. 2003, 108, 4658. [Google Scholar] [CrossRef]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus Ser. B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Amato, P.; Casamayor, E.O.; Lee, P.K.; Pointing, S.B. Microbial Ecology of the Atmosphere. FEMS Microbiol. Rev. 2022, 46, fuac009. [Google Scholar] [CrossRef]
- Morris, C.E.; Georgakopoulos, D.G.; Sands, D.C. Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV JP 2004, 121, 87–103. [Google Scholar] [CrossRef]
- Morris, C.E.; Sands, D.C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A.R.; Gonçalves, F.L.T.; Bigg, E.K. Urediospores of rust fungi are ice nucleation active at >−10 °C and harbor ice nucleation active bacteria. Atmos. Chem. Phys. 2013, 13, 4223–4233. [Google Scholar] [CrossRef]
- Hoose, C.; Kristjánsson, J.E.; Burrows, S.M. How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett. 2010, 5, 024009. [Google Scholar] [CrossRef]
- Amato, P.; Ménager, M.; Sancelme, M.; Laj, P.; Mailhot, G.; Delort, A.-M. Microbial population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds. Atmos. Environ. 2005, 39, 4143–4153. [Google Scholar] [CrossRef]
- Tignat-Perrier, R.; Dommergue, A.; Vogel, T.M.; Larose, C. Microbial Ecology of the Planetary Boundary Layer. Atmosphere 2020, 11, 1296. [Google Scholar] [CrossRef]
- Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P.A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A.I.; Morris, C.E. Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences 2008, 5, 1073–1084. [Google Scholar] [CrossRef]
- Zhang, M.; Khaled, A.; Amato, P.; Delort, A.-M.; Ervens, B. Sensitivities to biological aerosol particle properties and ageing processes: Potential implications for aerosol–cloud interactions and optical properties. Atmos. Chem. Phys. 2021, 21, 3699–3724. [Google Scholar] [CrossRef]
- Temkiv, T.Š.; Finster, K.; Hansen, B.M.; Nielsen, N.W.; Karlson, U.G. The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol. Ecol. 2012, 81, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Šantl-Temkiv, T.; Finster, K.; Dittmar, T.; Hansen, B.M.; Thyrhaug, R.; Nielsen, N.W.; Karlson, U.G. Hailstones: A Window into the Microbial and Chemical Inventory of a Storm Cloud. PLoS ONE 2013, 8, e53550. [Google Scholar] [CrossRef]
- Michaud, A.B.; Dore, J.E.; Leslie, D.; Lyons, W.B.; Sands, D.C.; Priscu, J.C. Biological ice nucleation initiates hailstone formation. J. Geophys. Res. Atmos. 2014, 119, 12–186. [Google Scholar] [CrossRef]
- Kozjek, M.; Vengust, D.; Radošević, T.; Žitko, G.; Koren, S.; Toplak, N.; Jerman, I.; Butala, M.; Podlogar, M.; Viršek, M.K. Dissecting giant hailstones: A glimpse into the troposphere with its diverse bacterial communities and fibrous microplastics. Sci. Total Environ. 2023, 856, 158786. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2021, 15, 44. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Tan, M.L.; Hoffmann, D.; Ebert, E.; Cui, A.; Johnston, D. Exploring the potential role of citizen science in the warning value chain for high impact weather. Front. Commun. 2022, 7, 949949. [Google Scholar] [CrossRef]
- Mantoani, M.C.; Martins, J.A.; Martins, L.D.; Carotenuto, F.; Šantl-Temkiv, T.; Morris, C.E.; Rodrigues, F.; Gonçalves, F.L.T. Thirty-Five Years of Aerosol–PBAP in situ Research in Brazil: The Need to Think outside the Amazonian Box. Climate 2023, 11, 17. [Google Scholar] [CrossRef]
- Rudke, A.; Xavier, A.; Martins, L.; Freitas, E.; Uvo, C.; Hallak, R.; Souza, R.; Andreoli, R.; Albuquerque, T.d.A.; Martins, J. Landscape changes over 30 years of intense economic activity in the upper Paraná River basin. Ecol. Inform. 2022, 72, 101882. [Google Scholar] [CrossRef]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most: Intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1071. [Google Scholar] [CrossRef]
- Martins, J.A.; Brand, V.S.; Capucim, M.N.; Felix, R.R.; Martins, L.D.; Freitas, E.D.; Gonçalves, F.L.; Hallak, R.; Dias, M.A.F.S.; Cecil, D.J. Climatology of destructive hailstorms in Brazil. Atmos. Res. 2016, 184, 126–138. [Google Scholar] [CrossRef]
- Marengo, J.A.; Douglas, M.W.; Dias, P.L.S. The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. J. Geophys. Res. Atmos. 2002, 107, 8079. [Google Scholar] [CrossRef]
- Salio, P.; Nicolini, M.; Zipser, E.J. Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Weather Rev. 2007, 135, 1290–1309. [Google Scholar] [CrossRef]
- Jones, C.; Carvalho, L.M.V. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Npj Clim. Atmos. Sci. 2018, 1, 2018. [Google Scholar] [CrossRef]
- Beal, A.; Hallak, R.; Martins, L.D.; Martins, J.A.; Biz, G.; Rudke, A.P.; Tarley, C.R. Climatology of hail in the triple border Paraná, Santa Catarina (Brazil) and Argentina. Atmos. Res. 2020, 234, 104747. [Google Scholar] [CrossRef]
- Beal, A.; Martins, L.D.; Martins, J.A.; Rudke, A.P.; de Almeida, D.S.; Costa, L.M.; Tarley, C.R. Evaluation of the chemical composition of hailstones from triple border Paraná, Santa Catarina (Brazil) and Argentina. Atmos. Pollut. Res. 2021, 12, 184–192. [Google Scholar] [CrossRef]
- Beal, A.; Martins, J.A.; Rudke, A.P.; de Almeida, D.S.; da Silva, I.; Sobrinho, O.M.; Andrade, M.d.F.; Tarley, C.R.; Martins, L.D. Chemical characterization of PM2.5 from region highly impacted by hailstorms in South America. Environ. Sci. Pollut. Res. 2022, 29, 5840–5851. [Google Scholar] [CrossRef] [PubMed]
- Knight, N.C.; Heymsfield, A.J. Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci. 1983, 40, 1510–1516. [Google Scholar] [CrossRef]
- Castro e Silva, D.M.; Santos, D.C.S.; Pukinskas, S.R.B.S.; Oshida, J.T.U.; Oliveira, L.; Carvalho, A.F.; Melhem, M.S.C. A new culture medium for recovering the agents of Cryptococcosis from environmental sources. Braz. J. Microbiol. 2015, 46, 355–358. [Google Scholar] [CrossRef]
- Mantoani, M.C.; Emygdio, A.P.; Degobbi, C.; Sapucci, C.R.; Guerra, L.C.; Dias, M.A.; Dias, P.L.; Zanetti, R.H.; Rodrigues, F.; Araujo, G.G.; et al. Rainfall effects on vertical profiles of airborne fungi over a mixed land-use context at the Brazilian Atlantic Forest biodiversity hotspot. Agric. For. Meteorol. 2023, 331, 109352. [Google Scholar] [CrossRef]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef]
- Reeve, M.A.; Bachmann, D. MALDI-TOF MS protein fingerprinting of mixed samples. Biol. Methods Protoc. 2019, 25, bpz013. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Fridlind, A.M.; Ackerman, A.S.; Jensen, E.J.; Heymsfield, A.J.; Poellot, M.R.; Stevens, D.E.; Wang, D.; Miloshevich, L.M.; Baumgardner, D.; Lawson, R.P.; et al. Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science 2004, 304, 718–722. [Google Scholar] [CrossRef]
- Phillips, V.T.J. Theory of in-cloud activation of aerosols and microphysical quasi-equilibrium in a deep updraft. J. Atmos. Sci. 2022, 79, 1865–1886. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 31 August 2023).
- Burrows, S.M.; Elbert, W.; Lawrence, M.G.; Pöschl, U. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef]
- Murray, B.J.; Wilson, T.W.; Broadley, S.L.; Wills, R.H. Heterogeneous freezing of water droplets containing kaolinite and montmorillonite particles. Atmos. Chem. Phys. Discuss. 2010, 5, 9695–9729. [Google Scholar]
- Chen, Y.; Demott, P.J.; Kreidenweis, S.M.; Rogers, D.C.; Sherman, D.E. Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sci. 2000, 57, 3752–3766. [Google Scholar] [CrossRef]
- Chen, J.-P.; Hazra, A.; Levin, Z. Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys. 2008, 8, 7431–7449. [Google Scholar] [CrossRef]
- Cantrell, W.; Heymsfield, A. Production of Ice in Tropospheric Clouds: A Review. Bull. Am. Meteorol. Soc. 2005, 86, 795–808. [Google Scholar] [CrossRef]
- Roberts, R.; Hallett, J. A laboratory study of the ice nucleating properties of some mineral particulates. Q. J. R. Meteorol. Soc. 1968, 94, 25–34. [Google Scholar] [CrossRef]
- DeMott, P.J.; Chen, Y.; Kreidenweis, S.M.; Rogers, D.C.; Sherman, D.E. Ice formation by black carbon particles. Geophys. Res. Lett. 1999, 26, 2429–2432. [Google Scholar] [CrossRef]
- Beaver, M.R.; Elrod, M.J.; Garland, R.M.; Tolbert, M.A. Ice nucleation in sulfuric acid/organic aerosols: Implications for cirrus cloud formation. Atmos. Chem. Phys. 2006, 6, 3231–3242. [Google Scholar] [CrossRef]
- Szyrmer, W.; Zawadzki, I. Biogenic and anthropogenic sources of ice-forming nuclei: A review. Bull. Am. Meteorol. Soc. 1997, 78, 209–228. [Google Scholar] [CrossRef]
- Vali, G.; Christensen, M.; Fresh, R.W.; Galyan, E.L.; Maki, L.R.; Schnell, R.C. Biogenic ice nuclei. Part II: Bacterial sources. J. Atmos. Sci. 1976, 33, 1565–1570. [Google Scholar] [CrossRef]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [PubMed]
- Hoose, C.; Mohler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. Discuss. 2012, 12, 12531–12621. [Google Scholar] [CrossRef]
- Möhler, O.; Georgakopoulos, D.G.; Morris, C.E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R. Heterogeneous ice nucleation activity of bacteria: New laboratory experiments at simulated cloud conditions. Biogeosciences 2008, 5, 1425–1435. [Google Scholar] [CrossRef]
- Maki, L.R.; Willoughby, K.J. Bacteria as biogenic sources of freezing nuclei. J. Appl. Meteorol. 1978, 17, 1049–1053. [Google Scholar] [CrossRef]
- Maki, L.R.; Galyan, E.L.; Chang-Chien, M.-M.; Caldwell, D.R. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 1974, 28, 456–459. [Google Scholar] [CrossRef]
Storm | Mass (g) | Size (cm) | Volume (cm3) | Density (g/cm3) |
GS | 0.339 ± 0.027 b | 0.699 ± 0.010 b | 0.179 ± 0.007 b | 1.869 ± 0.095 a |
DC | 0.550 ± 0.025 a | 1.026 ± 0.012 a | 0.568 ± 0.020 a | 0.970 ± 0.034 b |
TOTAL | 0.455 ± 0.030 | 0.879 ± 0.038 | 0.393 ± 0.046 | 1.374 ± 0.112 |
Bacterial CFU | Fungal CFU | Richness Bacteria | Richness Fungi | |
GS | 3.22 ± 1.99 | 0.00 ± 0.00 | 0.78 ± 0.32 | 0.00 ± 0.00 |
DC | 11.46 ± 5.03 | 5.46 ± 4.96 | 1.82 ± 0.52 | 0.46 ± 0.21 |
TOTAL | 7.75 ± 2.99 | 3.00 ± 2.74 | 1.35 ± 0.34 | 0.25 ± 0.12 |
Bacteria | Frequency (%) | Fungi | Frequency (%) |
---|---|---|---|
Bacillus cereus | 20 | Epicoccum nigrum | 15 |
Priestia megaterium | 15 | Curvularia lunata | 5 |
Bacillus licheniformis | 10 | Fusarium incarnatum | 5 |
Curtobacterium flaccumfaciens | 10 | ||
Cytobacillus horneckiae | 10 | ||
Methylobacterium rhodesianum | 10 | ||
Arthrobacter gandavensis | 5 | ||
Arthrobacter koreensis | 5 | ||
Bacillus marisflavi | 5 | ||
Bacillus pumilus | 5 | ||
Brevundimonas vesicularis | 5 | ||
Gordonia rubripertincta | 5 | ||
Lysinibacillus fusiformis | 5 | ||
Oceanobacillus sp. | 5 | ||
Paenibacillus sp. | 5 | ||
Pantoea agglomerans | 5 | ||
Peribacillus simplex | 5 | ||
Pseudomonas chlororaphis | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantoani, M.C.; Quintino, T.B.; Emygdio, A.P.M.; Guerra, L.C.C.; Dias, M.A.F.S.; Dias, P.L.S.; Rodrigues, F.; Silva, D.M.C.; Duo Filho, V.B.; Rudke, A.P.; et al. Biological Characterisation of Hailstones from Two Storms in South Brazil. Aerobiology 2023, 1, 98-108. https://doi.org/10.3390/aerobiology1020008
Mantoani MC, Quintino TB, Emygdio APM, Guerra LCC, Dias MAFS, Dias PLS, Rodrigues F, Silva DMC, Duo Filho VB, Rudke AP, et al. Biological Characterisation of Hailstones from Two Storms in South Brazil. Aerobiology. 2023; 1(2):98-108. https://doi.org/10.3390/aerobiology1020008
Chicago/Turabian StyleMantoani, Maurício C., Thaysla Beluco Quintino, Ana Paula M. Emygdio, Lara C. C. Guerra, Maria A. F. S. Dias, Pedro L. S. Dias, Fábio Rodrigues, Dulcilena M. C. Silva, Valter Batista Duo Filho, Anderson Paulo Rudke, and et al. 2023. "Biological Characterisation of Hailstones from Two Storms in South Brazil" Aerobiology 1, no. 2: 98-108. https://doi.org/10.3390/aerobiology1020008
APA StyleMantoani, M. C., Quintino, T. B., Emygdio, A. P. M., Guerra, L. C. C., Dias, M. A. F. S., Dias, P. L. S., Rodrigues, F., Silva, D. M. C., Duo Filho, V. B., Rudke, A. P., Alves, R. A., Martins, L. D., Martins, J. A., Siqueira, A., Boschilia, S. M., Carotenuto, F., Šantl-Temkiv, T., Phillips, V., & Gonçalves, F. L. T. (2023). Biological Characterisation of Hailstones from Two Storms in South Brazil. Aerobiology, 1(2), 98-108. https://doi.org/10.3390/aerobiology1020008