NET Formation Drives Tophaceous Gout
Abstract
1. Introduction
2. Formation of MSU-NETs
3. NETs Drive a Self-Amplifying Inflammatory Loop During Acute Gout Attacks
4. Formation of aggNETs: A Key Mechanism for Spontaneous Resolution of Inflammation During Acute Gout Flares
5. Formation and Maturation of Tophi
6. “Stable” Tophi: A Pseudo-Stable “Time Bomb”
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet Lond. Engl. 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Schauer, C.; Janko, C.; Munoz, L.E.; Zhao, Y.; Kienhöfer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.; Naschberger, E.; et al. Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nat. Med. 2014, 20, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel Cell Death Program Leads to Neutrophil Extracellular Traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef]
- Korchak, H.M.; Roos, D.; Giedd, K.N.; Wynkoop, E.M.; Vienne, K.; Rutherford, L.E.; Buyon, J.P.; Rich, A.M.; Weissmann, G. Granulocytes without Degranulation: Neutrophil Function in Granule-Depleted Cytoplasts. Proc. Natl. Acad. Sci. 1983, 80, 4968–4972. [Google Scholar] [CrossRef] [PubMed]
- Pilsczek, F.H.; Salina, D.; Poon, K.K.H.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.Y.; Surette, M.G.; Sugai, M.; et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus Aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in Modulating Acute and Chronic Inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Bruschi, M.; Petretto, A.; Santucci, L.; Vaglio, A.; Pratesi, F.; Migliorini, P.; Bertelli, R.; Lavarello, C.; Bartolucci, M.; Candiano, G.; et al. Neutrophil Extracellular Traps Protein Composition Is Specific for Patients with Lupus Nephritis and Includes Methyl-Oxidized Aenolase (Methionine Sulfoxide 93). Sci. Rep. 2019, 9, 7934. [Google Scholar] [CrossRef]
- Jorch, S.K.; Kubes, P. An Emerging Role for Neutrophil Extracellular Traps in Noninfectious Disease. Nat. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Petretto, A.; Bruschi, M.; Pratesi, F.; Croia, C.; Candiano, G.; Ghiggeri, G.; Migliorini, P. Neutrophil Extracellular Traps (NET) Induced by Different Stimuli: A Comparative Proteomic Analysis. PLoS ONE 2019, 14, e0218946. [Google Scholar] [CrossRef]
- Ng, L.G.; Ostuni, R.; Hidalgo, A. Heterogeneity of Neutrophils. Nat. Rev. Immunol. 2019, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil Extracellular Traps in Homeostasis and Disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Ren, H.; Jiang, J.; Shao, C.; Shi, Y.; Li, P. Dying to Defend: Neutrophil Death Pathways and Their Implications in Immunity. Adv. Sci. 2024, 11, 2306457. [Google Scholar] [CrossRef]
- Poli, V.; Zanoni, I. Neutrophil Intrinsic and Extrinsic Regulation of NETosis in Health and Disease. Trends Microbiol. 2023, 31, 280–293. [Google Scholar] [CrossRef]
- Sprenkeler, E.G.G.; Tool, A.T.J.; Henriet, S.S.V.; van Bruggen, R.; Kuijpers, T.W. Formation of Neutrophil Extracellular Traps Requires Actin Cytoskeleton Rearrangements. Blood 2022, 139, 3166–3180. [Google Scholar] [CrossRef]
- Singh, J.; Zlatar, L.; Muñoz-Becerra, M.; Lochnit, G.; Herrmann, I.; Pfister, F.; Janko, C.; Knopf, J.; Leppkes, M.; Schoen, J.; et al. Calpain-1 Weakens the Nuclear Envelope and Promotes the Release of Neutrophil Extracellular Traps. Cell Commun. Signal. 2024, 22, 435. [Google Scholar] [CrossRef]
- Du, G.; Healy, L.B.; David, L.; Walker, C.; El-Baba, T.J.; Lutomski, C.A.; Goh, B.; Gu, B.; Pi, X.; Devant, P.; et al. ROS-Dependent S-Palmitoylation Activates Cleaved and Intact Gasdermin D. Nature 2024, 630, 437–446. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Hsu, A.Y.; Ghimire, L.; Tahir, M.; Devant, P.; Fontana, P.; Du, G.; Liu, X.; Fabin, D.; Kambara, H.; et al. The Palmitoylation of Gasdermin D Directs Its Membrane Translocation and Pore Formation during Pyroptosis. Sci. Immunol. 2024, 9, eadn1452. [Google Scholar] [CrossRef]
- Sollberger, G.; Choidas, A.; Burn, G.L.; Habenberger, P.; Di Lucrezia, R.; Kordes, S.; Menninger, S.; Eickhoff, J.; Nussbaumer, P.; Klebl, B.; et al. Gasdermin D Plays a Vital Role in the Generation of Neutrophil Extracellular Traps. Sci. Immunol. 2018, 3, eaar6689. [Google Scholar] [CrossRef]
- Chen, K.W.; Monteleone, M.; Boucher, D.; Sollberger, G.; Ramnath, D.; Condon, N.D.; von Pein, J.B.; Broz, P.; Sweet, M.J.; Schroder, K. Noncanonical Inflammasome Signaling Elicits Gasdermin D-Dependent Neutrophil Extracellular Traps. Sci. Immunol. 2018, 3, eaar6676. [Google Scholar] [CrossRef] [PubMed]
- Mulay, S.R.; Desai, J.; Kumar, S.V.; Eberhard, J.N.; Thomasova, D.; Romoli, S.; Grigorescu, M.; Kulkarni, O.P.; Popper, B.; Vielhauer, V.; et al. Cytotoxicity of Crystals Involves RIPK3-MLKL-Mediated Necroptosis. Nat. Commun. 2016, 7, 10274. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.; Kumar, S.V.; Mulay, S.R.; Konrad, L.; Romoli, S.; Schauer, C.; Herrmann, M.; Bilyy, R.; Müller, S.; Popper, B.; et al. PMA and Crystal-Induced Neutrophil Extracellular Trap Formation Involves RIPK1-RIPK3-MLKL Signaling. Eur. J. Immunol. 2016, 46, 223–229. [Google Scholar] [CrossRef]
- Tatsiy, O.; Mayer, T.Z.; de Carvalho Oliveira, V.; Sylvain-Prévost, S.; Isabel, M.; Dubois, C.M.; McDonald, P.P. Cytokine Production and NET Formation by Monosodium Urate-Activated Human Neutrophils Involves Early and Late Events, and Requires Upstream TAK1 and Syk. Front. Immunol. 2019, 10, 2996. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, S.; Zhang, Z.; Zhang, J.; Wang, Z.; Liao, J.; Qiu, X.; Jia, E. Neutrophil Extracellular Traps Promote M1 Macrophage Polarization in Gouty Inflammation via Targeting Hexokinase-2. Free Radic. Biol. Med. 2024, 224, 540–553. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Lin, S.; Guan, W.; Liang, H.; Shen, J. Neutrophil Autophagy Induced by Monosodium Urate Crystals Facilitates Neutrophil Extracellular Traps Formation and Inflammation Remission in Gouty Arthritis. Front. Endocrinol. 2023, 14, 1071630. [Google Scholar] [CrossRef]
- Rich, A.M.; Giedd, K.N.; Cristello, P.; Weissmann, G. Granules Are Necessary for Death of Neutrophils after Phagocytosis of Crystalline Monosodium Urate. Inflammation 1985, 9, 221–232. [Google Scholar] [CrossRef]
- Schlesinger, N.; Pérez-Ruiz, F.; Lioté, F. Mechanisms and Rationale for Uricase Use in Patients with Gout. Nat. Rev. Rheumatol. 2023, 19, 640–649. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, T.; Shan, L.; Cao, L.; Zhu, X.; Xue, Y. Estradiol Regulates Intestinal ABCG2 to Promote Urate Excretion via the PI3K/Akt Pathway. Nutr. Metab. 2021, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Navarro, C.; Elert, K.; Ibañez-Velasco, A.; Monasterio-Guillot, L.; Andres, M.; Sivera, F.; Pascual, E.; Ruiz-Agudo, E. Unraveling the Pathological Biomineralization of Monosodium Urate Crystals in Gout Patients. Commun. Biol. 2024, 7, 828. [Google Scholar] [CrossRef]
- Cicco, S.; Cicco, G.; Racanelli, V.; Vacca, A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm. 2020, 2020, 7527953. [Google Scholar] [CrossRef] [PubMed]
- Block, H.; Rossaint, J.; Zarbock, A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022, 11, 1919. [Google Scholar] [CrossRef]
- Denning, N.-L.; Aziz, M.; Gurien, S.D.; Wang, P. DAMPs and NETs in Sepsis. Front. Immunol. 2019, 10, 2536. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Guo, Y.; Li, M.; Yang, K.; Liu, Y.; Ge, D.; Liu, Y.; Xue, C.; Xia, T.; et al. Monosodium Urate Crystal-Induced Pyroptotic Cell Death in Neutrophil and Macrophage Facilitates the Pathological Progress of Gout. Small Weinh. Bergstr. Ger. 2024, 20, e2308749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chandra, V.; Riquelme Sanchez, E.; Dutta, P.; Quesada, P.R.; Rakoski, A.; Zoltan, M.; Arora, N.; Baydogan, S.; Horne, W.; et al. Interleukin-17–Induced Neutrophil Extracellular Traps Mediate Resistance to Checkpoint Blockade in Pancreatic Cancer. J. Exp. Med. 2020, 217, e20190354. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, E.; Lusito, E.; Bianchessi, V.; Caronni, N.; Scala, S.; Basso-Ricci, L.; Cantaffa, C.; Masserdotti, A.; Barilaro, M.; Barresi, S.; et al. Cellular and Transcriptional Dynamics of Human Neutrophils at Steady State and upon Stress. Nat. Immunol. 2022, 23, 1470–1483. [Google Scholar] [CrossRef]
- Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil Activation and NETosis Are the Major Drivers of Thrombosis in Heparin-Induced Thrombocytopenia. Nat. Commun. 2019, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Aubé, F.-A.; Bidias, A.; Pépin, G. Who and How, DNA Sensors in NETs-Driven Inflammation. Front. Immunol. 2023, 14, 1190177. [Google Scholar] [CrossRef]
- Tsourouktsoglou, T.-D.; Warnatsch, A.; Ioannou, M.; Hoving, D.; Wang, Q.; Papayannopoulos, V. Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Rep. 2020, 31, 107602. [Google Scholar] [CrossRef]
- Lachowicz-Scroggins, M.E.; Dunican, E.M.; Charbit, A.R.; Raymond, W.; Looney, M.R.; Peters, M.C.; Gordon, E.D.; Woodruff, P.G.; Lefrançais, E.; Phillips, B.R.; et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1076–1085. [Google Scholar] [CrossRef]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef]
- Franklin, B.S.; Mangan, M.S.; Latz, E. Crystal Formation in Inflammation. Annu. Rev. Immunol. 2016, 34, 173–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Q.; Dong, Y.; Wang, L.; Zhang, Z.; Niu, R.; Wang, Y.; Bi, Y.; Liu, G. Piezo1-Directed Neutrophil Extracellular Traps Regulate Macrophage Differentiation during Influenza Virus Infection. Cell Death Dis. 2025, 16, 60. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Qin, L.; He, R.; Hu, C. Neutrophil Extracellular Trapping Network Promotes the Pathogenesis of Neutrophil-Associated Asthma through Macrophages. Immunol. Invest. 2021, 50, 544–561. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Jiang, J.; Hu, C.; Chen, X.; Chen, C.; Zhao, B.; Hu, X.; Zheng, Z.; Li, Y. Neutrophil Extracellular Traps Amplify Neutrophil Recruitment and Inflammation in Neutrophilic Asthma by Stimulating the Airway Epithelial Cells to Activate the TLR4/ NF-κB Pathway and Secrete Chemokines. Aging 2020, 12, 16820–16836. [Google Scholar] [CrossRef] [PubMed]
- Pittman, K.; Kubes, P. Damage-Associated Molecular Patterns Control Neutrophil Recruitment. J. Innate Immun. 2013, 5, 315–323. [Google Scholar] [CrossRef]
- Wessig, A.K.; Hoffmeister, L.; Klingberg, A.; Alberts, A.; Pich, A.; Brand, K.; Witte, T.; Neumann, K. Natural Antibodies and CRP Drive Anaphylatoxin Production by Urate Crystals. Sci. Rep. 2022, 12, 4483. [Google Scholar] [CrossRef]
- Donado, C.A.; Theisen, E.; Zhang, F.; Nathan, A.; Fairfield, M.L.; Rupani, K.V.; Jones, D.; Johannes, K.P.; Accelerating Medicines Partnership RA/SLE Network; Albrecht, J.; et al. Granzyme K Activates the Entire Complement Cascade. Nature 2025, 641, 211–221. [Google Scholar] [CrossRef]
- Kajana, X.; Caridi, G.; Bruschi, M.; Spinelli, S.; Lugani, F.; Ghiggeri, G.M.; La Porta, E.; Mortari, G.; Verrina, E.E.; Angeletti, A.; et al. The Crosstalk Between NETs and the Complement Cascade: An Overview in Nephrological Autoimmune Disease. Int. J. Mol. Sci. 2025, 26, 2789. [Google Scholar] [CrossRef]
- Portilla, D.; Sabapathy, V.; Chauss, D. Role of Local Complement Activation in Kidney Fibrosis and Repair. J. Clin. Investig. 2025, 135, e188345. [Google Scholar] [CrossRef]
- Risitano, A.M.; Peffault De Latour, R.; Marano, L.; Frieri, C. Discovering C3 Targeting Therapies for Paroxysmal Nocturnal Hemoglobinuria: Achievements and Pitfalls. Semin. Immunol. 2022, 59, 101618. [Google Scholar] [CrossRef]
- Chhana, A.; Dalbeth, N. The Gouty Tophus: A Review. Curr. Rheumatol. Rep. 2015, 17, 19. [Google Scholar] [CrossRef]
- Pascart, T.; Filippou, G.; Lioté, F.; Sirotti, S.; Jauffret, C.; Abhishek, A. Calcium Pyrophosphate Deposition Disease. Lancet Rheumatol. 2024, 6, e791–e804. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Hsieh, S.-C.; Chen, W.-Y.; Li, K.-J.; Wu, C.-H.; Wu, P.-C.; Tsai, C.-Y.; Yu, C.-L. Spontaneous Resolution of Acute Gouty Arthritis Is Associated with Rapid Induction of the Anti-Inflammatory Factors TGFβ1, IL-10 and Soluble TNF Receptors and the Intracellular Cytokine Negative Regulators CIS and SOCS3. Ann. Rheum. Dis. 2011, 70, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, T.; Yang, X.; Cao, L.; Xu, R.; Liu, J.; Lin, C.; Yu, Y.; Xuan, D.; Zhu, X.; et al. IL-37 Blocks Gouty Inflammation by Shaping Macrophages into a Non-Inflammatory Phagocytic Phenotype. Rheumatology 2022, 61, 3841–3853. [Google Scholar] [CrossRef]
- Cumpelik, A.; Ankli, B.; Zecher, D.; Schifferli, J.A. Neutrophil Microvesicles Resolve Gout by Inhibiting C5a-Mediated Priming of the Inflammasome. Ann. Rheum. Dis. 2016, 75, 1236–1245. [Google Scholar] [CrossRef]
- Grégoire, M.; Uhel, F.; Lesouhaitier, M.; Gacouin, A.; Guirriec, M.; Mourcin, F.; Dumontet, E.; Chalin, A.; Samson, M.; Berthelot, L.-L.; et al. Impaired Efferocytosis and Neutrophil Extracellular Trap Clearance by Macrophages in ARDS. Eur. Respir. J. 2018, 52, 1702590. [Google Scholar] [CrossRef] [PubMed]
- Reinwald, C.; Schauer, C.; Csepregi, J.Z.; Kienhöfer, D.; Weidner, D.; Malissen, M.; Mocsai, A.; Schett, G.; Herrmann, M.; Hoffmann, M. Reply to “Neutrophils Are Not Required for Resolution of Acute Gouty Arthritis in Mice”. Nat. Med. 2016, 22, 1384–1386. [Google Scholar] [CrossRef]
- Knopf, J.; Leppkes, M.; Schett, G.; Herrmann, M.; Muñoz, L.E. Aggregated NETs Sequester and Detoxify Extracellular Histones. Front. Immunol. 2019, 10, 2176. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, L.E.; Leppkes, M.; Fuchs, T.A.; Hoffmann, M.; Herrmann, M. Missing in Action—The Meaning of Cell Death in Tissue Damage and Inflammation. Immunol. Rev. 2017, 280, 26–40. [Google Scholar] [CrossRef]
- Hahn, J.; Schauer, C.; Czegley, C.; Kling, L.; Petru, L.; Schmid, B.; Weidner, D.; Reinwald, C.; Biermann, M.H.C.; Blunder, S.; et al. Aggregated Neutrophil Extracellular Traps Resolve Inflammation by Proteolysis of Cytokines and Chemokines and Protection from Antiproteases. FASEB J. 2019, 33, 1401–1414. [Google Scholar] [CrossRef]
- Lu, C.-H.; Shen, C.-Y.; Li, K.-J.; Wu, C.-H.; Chen, Y.-H.; Kuo, Y.-M.; Hsieh, S.-C.; Yu, C.-L. Resolution of Acute Inflammation Induced by Monosodium Urate Crystals (MSU) through Neutrophil Extracellular Trap-MSU Aggregate-Mediated Negative Signaling. J. Inflamm. 2024, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil Extracellular Traps: From Physiology to Pathology. Cardiovasc. Res. 2022, 118, 2737–2753. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shan, L.; Wang, H.; Schauer, C.; Schoen, J.; Zhu, L.; Lu, C.; Wang, Z.; Xue, Y.; Wu, H.; et al. Neutrophil Extracellular Trap–Borne Elastase Prevents Inflammatory Relapse in Intercritical Gout. Arthritis Rheumatol. 2023, 75, 1039–1047. [Google Scholar] [CrossRef]
- Stewart, S.; Su, I.; Gamble, G.D.; Dalbeth, N. Diagnostic Value of Different Imaging Features for Patients with Suspected Gout: A Network Meta-Analysis. Semin. Arthritis Rheum. 2021, 51, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Bayat, S.; Baraf, H.S.B.; Rech, J. Update on Imaging in Gout: Contrasting and Comparing the Role of Dual-Energy Computed Tomography to Traditional Diagnostic and Monitoring Techniques. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 114), 53–60. [Google Scholar]
- Tao, H.; Mo, Y.; Liu, W.; Wang, H. A Review on Gout: Looking Back and Looking Ahead. Int. Immunopharmacol. 2023, 117, 109977. [Google Scholar] [CrossRef]
- Dalbeth, N.; Pool, B.; Gamble, G.D.; Smith, T.; Callon, K.E.; McQueen, F.M.; Cornish, J. Cellular Characterization of the Gouty Tophus: A Quantitative Analysis. Arthritis Rheum. 2010, 62, 1549–1556. [Google Scholar] [CrossRef]
- Yen, J.-H.; Lin, L.-C.; Chen, M.-C.; Sarang, Z.; Leong, P.-Y.; Chang, I.-C.; Hsu, J.-D.; Chen, J.-H.; Hsieh, Y.-F.; Pallai, A.; et al. The Metastatic Tumor Antigen 1-Transglutaminase-2 Pathway Is Involved in Self-Limitation of Monosodium Urate Crystal-Induced Inflammation by Upregulating TGF-Β1. Arthritis Res. Ther. 2015, 17, 65. [Google Scholar] [CrossRef]
- Elsaid, K.A.; Jay, G.D.; Liu-Bryan, R.; Terkeltaub, R. Proteoglycan 4 (PRG4)/Lubricin and the Extracellular Matrix in Gout. Gout Urate Cryst. Depos. Dis. 2023, 1, 122–136. [Google Scholar] [CrossRef]
- Shi, L.; Liang, T.; Yang, F.; Zhu, F.-F.; Liu, J.; Jiang, J.-Q.; Wu, X.-W.; Chen, A.-S.; Yuan, D.-P.; Liang, X.-L. Matrix Metalloproteinase-3 Induces Proteoglycan Degradation in Gouty Arthritis Model. Gene 2021, 765, 145120. [Google Scholar] [CrossRef] [PubMed]
- Chhana, A.; Lee, G.; Dalbeth, N. Factors Influencing the Crystallization of Monosodium Urate: A Systematic Literature Review. BMC Musculoskelet. Disord. 2015, 16, 296. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Chen, Y.; Ji, M.; Hua, Y. Osteoarthritis Synovium as a Nidus for Monosodium Urate Crystal Deposition Inducing Severe Gout Studied by Label-free Stimulated Raman Scattering Combined with Synovial Organoids. MedComm 2025, 6, e70040. [Google Scholar] [CrossRef]
- Dalbeth, N.; House, M.E.; Aati, O.; Tan, P.; Franklin, C.; Horne, A.; Gamble, G.D.; Stamp, L.K.; Doyle, A.J.; McQueen, F.M. Urate Crystal Deposition in Asymptomatic Hyperuricaemia and Symptomatic Gout: A Dual Energy CT Study. Ann. Rheum. Dis. 2015, 74, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhong, J.; Yang, Y.; Liu, Y.; Zhu, X. Editorial: Community Series in Advances in Pathogenesis and Therapies of Gout, Volume II. Front. Immunol. 2025, 16, 1556844. [Google Scholar] [CrossRef]
- Liu, Y.; Jarman, J.B.; Low, Y.S.; Augustijn, H.E.; Huang, S.; Chen, H.; DeFeo, M.E.; Sekiba, K.; Hou, B.-H.; Meng, X.; et al. A Widely Distributed Gene Cluster Compensates for Uricase Loss in Hominids. Cell 2023, 186, 3400–3413.e20. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Arakawa, H.; Tamai, I. Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacol. Ther. 2024, 256, 108615. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Gamble, G.D.; Horne, A.; Doyle, A.J.; Drake, J.; Aati, O.; Son, C.-N.; Kalluru, R.; Latto, K.; Stamp, L.; et al. Relationship between Serum Urate and Changes in Dual-Energy CT Monosodium Urate Crystal Volume over 1 Year in People with Gout: An Individual Participant Data Analysis. Ann. Rheum. Dis. 2025, 84, 136–142. [Google Scholar] [CrossRef]
- Lee, S.K.; Jung, J.-Y.; Jee, W.-H.; Lee, J.J.; Park, S.-H. 10.1007/S00330-018-5716-4. Eur. Radiol. 2019, 29, 1267–1275. [Google Scholar] [CrossRef]
- Nieradko-Iwanicka, B. The Role of Alcohol Consumption in Pathogenesis of Gout. Crit. Rev. Food Sci. Nutr. 2022, 62, 7129–7137. [Google Scholar] [CrossRef]
- Clebak, K.T.; Morrison, A.; Croad, J.R. Gout: Rapid Evidence Review. Am. Fam. Physician 2020, 102, 533–538. [Google Scholar]
- Kim, T.S.; Silva, L.M.; Theofilou, V.I.; Greenwell-Wild, T.; Li, L.; Williams, D.W.; Ikeuchi, T.; Brenchley, L.; NIDCD/NIDCR Genomics and Computational Biology Core; Bugge, T.H.; et al. Neutrophil Extracellular Traps and Extracellular Histones Potentiate IL-17 Inflammation in Periodontitis. J. Exp. Med. 2023, 220, e20221751. [Google Scholar] [CrossRef]
- Ji, Z.; Huang, Y.; Liang, L.; Lin, P.; Guo, X.; Huang, Q.; Huang, Z.; Chen, S.; Huang, Z.; Wang, B.; et al. Clinical Characteristics and Risk Factors Associated with Bone Erosion in Patients with Tophi. Adv. Rheumatol. 2024, 64, 18. [Google Scholar] [CrossRef]
- Martins, D.; Tonon, C.R.; Pacca, R.L.; Matchil, N.L.; Junior, L.A.J.; Queiroz, D.S.; Pereira, F.W.L.; Silva, A.M.; Padovese, V.; Padovani De Toledo Moraes, M.; et al. Gout Storm. Am. J. Case Rep. 2021, 22, e932683. [Google Scholar] [CrossRef]
- Gaydarski, L.; Petrova, K.; Hadzhiyanev, A.; Landzhov, B.; Georgiev, G.P. A Complex Case of Bilateral Carpal Tunnel Syndrome in a Patient With Gout: A Case Report and Review of Literature. Cureus 2024, 16, e70493. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Shan, L.; Xue, Y.; Schett, G.; Herrmann, M.; Liu, L. Colchicine Inhibits Monosodium Urate Crystal-Mediated Inflammation by Influencing F-Actin Formation. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167602. [Google Scholar] [CrossRef]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Rheumatol. 2020, 72, 879–895. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.D. Gout. Ann. Intern. Med. 2025, 178, ITC33–ITC48. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Rosenblum, A.R.; Somogyi, J.R.; Hynes, K.K.; Guevara, M.E. Orthopaedic Management of Gout. JAAOS Glob. Res. Rev. 2022, 6, e22.00216. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, S.M.; Grebe, K.; Whitehead, L.W.; Rogers, K.L.; Nebl, T.; Murphy, J.M.; Wicks, I.P. Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway. J. Immunol. 2018, 200, 1802–1816. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, J.; Knopf, J.; Zhu, L.; Zhao, Y.; Liu, L.; Herrmann, M. NET Formation Drives Tophaceous Gout. Gout Urate Cryst. Depos. Dis. 2025, 3, 16. https://doi.org/10.3390/gucdd3030016
Wang Y, Han J, Knopf J, Zhu L, Zhao Y, Liu L, Herrmann M. NET Formation Drives Tophaceous Gout. Gout, Urate, and Crystal Deposition Disease. 2025; 3(3):16. https://doi.org/10.3390/gucdd3030016
Chicago/Turabian StyleWang, Yuqi, Jinshuo Han, Jasmin Knopf, Lingjiang Zhu, Yi Zhao, Lei Liu, and Martin Herrmann. 2025. "NET Formation Drives Tophaceous Gout" Gout, Urate, and Crystal Deposition Disease 3, no. 3: 16. https://doi.org/10.3390/gucdd3030016
APA StyleWang, Y., Han, J., Knopf, J., Zhu, L., Zhao, Y., Liu, L., & Herrmann, M. (2025). NET Formation Drives Tophaceous Gout. Gout, Urate, and Crystal Deposition Disease, 3(3), 16. https://doi.org/10.3390/gucdd3030016