Gout, Urate, and Crystal Deposition Disease: Launch of the First Journal Dedicated to a Rapidly Growing Field
1. Context
2. Why Launch the First Journal in Gout, Hyperuricemia, Urate Biology, and Crystal-Associated Disease?
3. What Unmet Research Areas in Crystal Deposition Disease Do We Envisage? Some Crystal Ball Gazing
4. About G-CAN
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safiri, S.; Kolahi, A.A.; Cross, M.; Carson-Chahhoud, K.; Hoy, D.; Almasi-Hashiani, A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Mansournia, M.A.; et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: A systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020, 72, 1916–1927. [Google Scholar] [CrossRef] [PubMed]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Liote, F.; Merriman, T.; Nasi, S.; So, A. Workshop report: 4th European Crystal Network meeting. Arthritis Res. Ther. 2013, 15, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhishek, A.; Neogi, T.; Choi, H.; Doherty, M.; Rosenthal, A.K.; Terkeltaub, R. Unmet needs and the path forward in joint disease associated with calcium pyrophosphate crystal deposition. Arthritis Rheumatol. 2018, 70, 1182–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalbeth, N.; Bardin, T.; Doherty, M.; Liote, F.; Richette, P.; Saag, K.G.; So, A.K.; Stamp, L.K.; Choi, H.K.; Terkeltaub, R. Discordant American College of Physicians and international rheumatology guidelines for gout management: Consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN). Nat. Rev. Rheumatol. 2017, 13, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamp, L.K.; Farquhar, H.; Pisaniello, H.L.; Vargas-Santos, A.B.; Fisher, M.; Mount, D.B.; Choi, H.K.; Terkeltaub, R.; Hill, C.L.; Gaffo, A.L. Management of gout in chronic kidney disease: A G-CAN Consensus Statement on the research priorities. Nat. Rev. Rheumatol. 2021, 17, 633–641. [Google Scholar] [CrossRef]
- Gaffo, A.L.; Dalbeth, N.; Saag, K.G.; Singh, J.A.; Rahn, E.J.; Mudano, A.S.; Chen, Y.H.; Lin, C.T.; Bourke, S.; Louthrenoo, W.; et al. Brief report: Validation of a definition of flare in patients with established gout. Arthritis Rheumatol. 2018, 70, 462–467. [Google Scholar] [CrossRef]
- Bursill, D.; Taylor, W.J.; Terkeltaub, R.; Abhishek, A.; So, A.K.; Vargas-Santos, A.B.; Gaffo, A.L.; Rosenthal, A.; Tausche, A.K.; Reginato, A.; et al. Gout, Hyperuricaemia and Crystal-Associated Disease Network (G-CAN) consensus statement regarding labels and definitions of disease states of gout. Ann. Rheum. Dis. 2019, 78, 1592–1600. [Google Scholar] [CrossRef]
- Bursill, D.; Taylor, W.J.; Terkeltaub, R.; Kuwabara, M.; Merriman, T.R.; Grainger, R.; Pineda, C.; Louthrenoo, W.; Edwards, N.L.; Andres, M.; et al. Gout, Hyperuricemia, and Crystal-Associated Disease Network consensus statement regarding labels and definitions for disease elements in gout. Arthritis Care Res. 2019, 71, 427–434. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Pascart, T.; Latourte, A.; Godsave, C.; Kundakci, B.; Naden, R.P.; Taylor, W.J.; Dalbeth, N.; Neogi, T.; Perez-Ruiz, F.; et al. Identifying potential classification criteria for calcium pyrophosphate deposition disease (CPPD): Item generation and item reduction. Arthritis Care Res. 2021, 74, 1649–1658. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Becce, F.; Pascart, T.; Guermazi, A.; Budzik, J.F.; Dalbeth, N.; Filippou, G.; Iagnocco, A.; Kohler, M.J.; Laredo, J.D.; et al. Imaging features of calcium pyrophosphate deposition (CPPD) disease: Consensus definitions from an international multidisciplinary working group. Arthritis Care Res. 2022. [Google Scholar] [CrossRef]
- Cai, K.; Fuller, A.; Zhang, Y.; Hensey, O.; Grossberg, D.; Christensen, R.; Shea, B.; Singh, J.A.; McCarthy, G.M.; Rosenthal, A.K.; et al. Towards development of core domain sets for short term and long term studies of calcium pyrophosphate crystal deposition (CPPD) disease: A framework paper by the OMERACT CPPD working group. Semin. Arthritis Rheum. 2021, 51, 946–950. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Xing, D.; Lin, J. Global research trends in hyperuricemia: A bibliometric and visualized study. Mod. Rheumatol. 2022, 32, 619–625. [Google Scholar] [CrossRef]
- Cipolletta, E.; Tata, L.J.; Nakafero, G.; Avery, A.J.; Mamas, M.A.; Abhishek, A. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA 2022, 328, 440–450. [Google Scholar] [CrossRef]
- Agrawal, A.; Niroula, A.; Cunin, P.; McConkey, M.; Kovalcik, K.; Kim, P.G.; Wong, W.W.; Weeks, L.D.; Lin, A.E.; Miller, P.G.; et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 2022, 140, 1098–1103. [Google Scholar] [CrossRef]
- Liu, Y.; Jarman, J.B.; Low, Y.S.; Huang, S.; Chen, H.; Defeo, M.E.; Sekiba, K.; Hou, B.-H.; Ganesan, C.; Pao, A.C. A widely distributed gene cluster compensates for uricase loss in hominids. bioRxiv 2022. [Google Scholar] [CrossRef]
- Casula, M.; Andreis, A.; Avondo, S.; Vaira, M.P.; Imazio, M. Colchicine for cardiovascular medicine: A systematic review and meta-analysis. Future Cardiol. 2021, 18, 647–659. [Google Scholar] [CrossRef]
- Subramanian, A.; Gokhale, K.; Sainsbury, C.; Nirantharakumar, K.; Toulis, K.A. Sodium-glucose cotransporter-2 inhibitors and the risk of gout in patients with type 2 diabetes mellitus: A propensity-score-matched, new-user design study with an active comparator using the IQVIA Medical Research Data UK database. Diabetes Obes. Metab. 2022, 2022, 4858. [Google Scholar] [CrossRef]
- Coleman, G.B.; Dalbeth, N.; Frampton, C.; Haslett, J.; Drake, J.; Su, I.; Horne, A.M.; Stamp, L.K. Long-term follow-up of a randomized controlled trial of allopurinol dose escalation to achieve target serum urate in people with gout. J. Rheumatol 2022, 2022, 270. [Google Scholar] [CrossRef]
- Jauffret, C.; Ottaviani, S.; Latourte, A.; Ea, H.-K.; Graf, S.; Lioté, F.; Bardin, T.; Richette, P.; Pascart, T. simple application and adherence to gout guidelines enables disease control: An observational study in French referral centres. J. Clin. Med. 2022, 11, 5742. [Google Scholar] [CrossRef]
- Mackenzie, I.S.; Ford, I.; Nuki, G.; Hallas, J.; Hawkey, C.J.; Webster, J.; Ralston, S.H.; Walters, M.; Robertson, M.; De Caterina, R. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): A multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 2020, 396, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, C.; Liang, N.; Liu, Z.; Li, X.; Zhu, Z.-J.; Merriman, T.R.; Dalbeth, N.; Terkeltaub, R.; Li, C.; et al. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout. Arthritis Rheumatol. 2021, 73, 1738–1748. [Google Scholar] [CrossRef] [PubMed]
- Marty-Ané, A.; Norberciak, L.; Andrès, M.; Houvenagel, E.; Ducoulombier, V.; Legrand, J.; Budzik, J.-F.; Pascart, T. Crystal deposition measured with dual-energy computed tomography: Association with mortality and cardiovascular risks in gout. Rheumatology 2021, 60, 4855–4860. [Google Scholar] [CrossRef] [PubMed]
- Stamp, L.K.; Anderson, N.G.; Becce, F.; Rajeswari, M.; Polson, M.; Guyen, O.; Viry, A.; Choi, C.; Kirkbride, T.E.; Raja, A.Y. Clinical utility of multi-energy spectral photon-counting computed tomography in crystal arthritis. Arthritis Rheumatol. 2019, 71, 1158–1162. [Google Scholar] [CrossRef]
Recent Advances -> New Research Areas | Broad Areas of Unmet Needs |
---|---|
Recent gout flare increases risk of cardiovascular event [14] | Role of the articular environment and extracellular matrix in urate metabolism and monosodium urate crystal deposition |
Poor urate control and lack of urate-lowering therapy worsen cardiovascular disease | The molecular pathogenesis of the gout flare and tophus deposition |
Colchicine is effective in prophylaxis against major cardiovascular events [17] | Disentangling the causal relationship(s) between crystal disease and associated comorbidity |
SGLT2 inhibitors are uricosuric, preventive for incident gout [18], have better outcomes for gout with diabetes, and have renal protective effects | Factors driving differences in pathogenesis of crystal disease between men and women |
Allopurinol/febuxostat reach target in the majority of gout patients and improve outcomes with appropriate dosing [19,20] | Risk factors for crystal deposition disease in non-European populations |
Febuxostat cardiovascular safety comparable to allopurinol [21] | The role of epigenomic reprogramming in immune response to crystals |
HLA-B*5801 and ABCG2 pharmacogenomics | The pathogenesis and epidemiology of non-MSU crystal-mediated crystal deposition disease, including genetic and genomic studies |
Gut microbiome manipulation robustly affects urate level [16] | Identification of biomarkers to identify patients at increased risk of flares |
The clonal hematopoiesis of indeterminate potential pathway implicated in gout [15] | The pathogenic role of calcium pyrophosphate and/or basic calcium phosphate crystals in osteoarthritis onset and progression |
Association of the blood metabolome with gout [22] | Should imaging outcomes guide gout treatment (ULT and prophylaxis)? |
Association of the monosodium urate crystal burden assessed with advanced imaging techniques and gout flares, comorbidities, and mortality [23] | Treatments capable of achieving calcium pyrophosphate and basic calcium phosphate crystal dissolution and inhibiting crystal deposition |
Dual-energy computed tomography and photon-counting computed tomography are able to discriminate intra-articular calcium crystal types [24] | Trials demonstrating the efficacy of any treatment to control the acute and/or chronic inflammation induced by calcium pyrophosphate crystals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascart, T.; Merriman, T.R.; Choi, H.K.; Terkeltaub, R. Gout, Urate, and Crystal Deposition Disease: Launch of the First Journal Dedicated to a Rapidly Growing Field. Gout Urate Cryst. Depos. Dis. 2023, 1, 1-6. https://doi.org/10.3390/gucdd1010001
Pascart T, Merriman TR, Choi HK, Terkeltaub R. Gout, Urate, and Crystal Deposition Disease: Launch of the First Journal Dedicated to a Rapidly Growing Field. Gout, Urate, and Crystal Deposition Disease. 2023; 1(1):1-6. https://doi.org/10.3390/gucdd1010001
Chicago/Turabian StylePascart, Tristan, Tony R. Merriman, Hyon K. Choi, and Robert Terkeltaub. 2023. "Gout, Urate, and Crystal Deposition Disease: Launch of the First Journal Dedicated to a Rapidly Growing Field" Gout, Urate, and Crystal Deposition Disease 1, no. 1: 1-6. https://doi.org/10.3390/gucdd1010001