SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Structured Illumination Reflectance Imaging (SIRI) System and Image Acquisition
2.3. Image Demodulation and Processing
2.4. Experimental Procedure
2.5. Image Augmentation
2.6. Semantic Segmentation Network Model
2.6.1. SE Attention Mechanism
2.6.2. MOGA Module
2.6.3. VGG Encoder
2.7. Model Evaluation
3. Results and Discussion
3.1. Identification of Latent Damage in Xiang Pears via Image Segmentation
3.2. Model Evaluation After Image Segmentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celik, H.K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biol. Technol. 2017, 128, 83–97. [Google Scholar] [CrossRef]
- Fu, X.; Wang, M. Detection of early bruises on pears using fluorescence hyperspectral imaging technique. Food Anal. Methods 2022, 15, 115–123. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Lu, R. Identification of early decayed oranges using structured-illumination reflectance imaging coupled with fast demodulation and improved image processing algorithms. Postharvest Biol. Technol. 2024, 207, 112627. [Google Scholar] [CrossRef]
- Neupane, C.; Pereira, M.; Koirala, A.; Walsh, K.B. Fruit sizing in orchard: A review from caliper to machine vision with deep learning. Sensors 2023, 23, 3131. [Google Scholar] [CrossRef] [PubMed]
- Munera, S.; Blasco, J.; Amigo, J.M.; Cubero, S.; Talens, P.; Aleixos, N. Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines. Biosyst. Eng. 2019, 182, 54–64. [Google Scholar] [CrossRef]
- Lu, Y.; Li, R.; Lu, R. Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples. Postharvest Biol. Technol. 2016, 117, 89–93. [Google Scholar] [CrossRef]
- He, Y.; Xiao, Q.L.; Bai, X.L.; Zhou, L.; Liu, F.; Zhang, C. Recent progress of nondestructive techniques for fruits damage inspection: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5476–5494. [Google Scholar] [CrossRef]
- Li, J.B.; Huang, W.Q.; Tian, X.; Wang, C.P.; Fan, S.X.; Zhao, C.J. Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 582–592. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Enhancing chlorophyll fluorescence imaging under structured illumination with automatic vignetting correction for detection of chilling injury in cucumbers. Comput. Electron. Agric. 2020, 168, 105145. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Han, L.; Cai, Z.; Guo, Z. Two-wavelength image detection of early decayed oranges by coupling spectral classification with image processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, C.; Zhang, H.; Zhang, Y.; Li, J. Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods. Postharvest Biol. Technol. 2024, 210, 112788. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Fan, S.; Liang, X.; Huang, W.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.; Zhang, C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [Google Scholar] [CrossRef]
- Chen, Y.; An, X.; Gao, S.; Li, S.; Kang, H. A deep learning-based vision system combining detection and tracking for fast on-line citrus sorting. Front. Plant Sci. 2021, 12, 622062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, C.; Song, W.; Sham, C.-W. RGGC-UNet: Accurate deep learning framework for signet ring cell semantic segmentation in pathological images. Bioengineering 2023, 11, 16. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R.; Zhang, Z. Detection of subsurface bruising in fresh pickling cucumbers using structured-illumination reflectance imaging. Postharvest Biol. Technol. 2021, 180, 111624. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, R. Development of a multispectral structured illumination reflectance imaging (SIRI) system and its application to bruise detection of apples. Trans. ASABE 2017, 60, 1379–1389. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Yang, F. Optical properties of blueberry flesh and skin and Monte Carlo multi-layered simulation of light interaction with fruit tissues. Postharvest Biol. Technol. 2019, 150, 28–41. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, X.; Zhu, Y.; Xu, X.; Rao, X. Evolution pattern in bruised tissue of ‘red delicious’ apple. Foods 2024, 13, 602. [Google Scholar] [CrossRef]
- Lu, Y.; Sardari, H. A structured-illumination reflectance imaging dataset for woody breast assessment of broiler meat. Data Brief 2025, 60, 111612. [Google Scholar] [CrossRef]
- Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt Laser. Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y.; Li, J.; Zhang, J.; Li, X. Synchronous detection of internal and external defects of citrus by structured-illumination reflectance imaging coupling with improved YOLO v7. Postharvest Biol. Technol. 2025, 227, 113576. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Luo, L.; Cai, Z.; Shi, R.; Cai, L.; Li, J. Construction of a stable YOLOv8 classification model for apple bruising detection based on physicochemical property analysis and structured-illumination reflectance imaging. Postharvest Biol. Technol. 2025, 219, 113194. [Google Scholar] [CrossRef]
- Bai, D.; Li, G.; Jiang, D.; Tao, B.; Yun, J.; Hao, Z.; Zhou, D.; Ju, Z. Depth feature fusion based surface defect region identification method for steel plate manufacturing. Comput. Electr. Eng. 2024, 116, 109166. [Google Scholar] [CrossRef]
- Dixit, R.B.; Jha, C.K. Fundus image based diabetic retinopathy detection using EfficientNetB3 with squeeze and excitation block. Med. Eng. Phys. 2025, 140, 104350. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xie, Y.; Wei, X.S.; Zhao, B.R.; Chen, Z.M.; Tan, X. Delving deep into spatial pooling for squeeze-and-excitation networks. Pattern Recogn. 2022, 121, 108159. [Google Scholar] [CrossRef]
- Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 2019, 13, 95. [Google Scholar] [CrossRef]
- Behera, S.K.; Rath, A.K.; Sethy, P.K. Fruits yield estimation using Faster R-CNN with MIoU. Multimed. Tools Appl. 2021, 80, 19043–19056. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhang, Y.; Wei, J.; Zhan, B.; Liu, X.; Luo, W. Structured-illumination reflectance imaging combined with deep learning for detecting early decayed oranges. Postharvest Biol. Technol. 2024, 217, 113121. [Google Scholar] [CrossRef]
Sample | 50 | 100 | 150 | 200 | 250 |
---|---|---|---|---|---|
S1 | 0.228 | 0.405 | 0.611 | 0.550 | 0.502 |
S2 | 0.256 | 0.436 | 0.656 | 0.586 | 0.511 |
Network Structure | Image | mIoU/% | mPA/% | mPrecision/% | mRecall/% | F1/% |
---|---|---|---|---|---|---|
PSPNet | RT | 80.83 | 83.45 | 94.47 | 83.45 | 88.61 |
AC | 79.88 | 83.05 | 94.09 | 82.55 | 87.94 | |
DeeplabV3-plus | RT | 88.78 | 92.59 | 94.46 | 92.95 | 93.69 |
AC | 86.50 | 91.88 | 94.10 | 91.88 | 92.97 | |
DeeplabV3-DM | RT | 88.71 | 92.75 | 94.58 | 92.75 | 93.65 |
AC | 87.05 | 92.55 | 93.40 | 93.12 | 93.25 | |
HRNet | RT | 89.49 | 92.73 | 95.63 | 92.73 | 94.15 |
AC | 89.39 | 92.42 | 94.76 | 92.67 | 93.70 | |
UNet | RT | 91.98 | 96.05 | 95.25 | 96.05 | 95.64 |
AC | 91.58 | 95.65 | 94.88 | 95.79 | 95.33 | |
MOGA-UNet | RT | 94.38 | 96.27 | 97.80 | 96.27 | 97.02 |
AC | 94.10 | 96.06 | 97.50 | 96.26 | 96.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, B.; Liao, J.; Zhang, H.; Luo, W.; Wang, S.; Zeng, Q.; Lai, Y. SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention. Spectrosc. J. 2025, 3, 22. https://doi.org/10.3390/spectroscj3030022
Zhan B, Liao J, Zhang H, Luo W, Wang S, Zeng Q, Lai Y. SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention. Spectroscopy Journal. 2025; 3(3):22. https://doi.org/10.3390/spectroscj3030022
Chicago/Turabian StyleZhan, Baishao, Jiawei Liao, Hailiang Zhang, Wei Luo, Shizhao Wang, Qiangqiang Zeng, and Yongxian Lai. 2025. "SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention" Spectroscopy Journal 3, no. 3: 22. https://doi.org/10.3390/spectroscj3030022
APA StyleZhan, B., Liao, J., Zhang, H., Luo, W., Wang, S., Zeng, Q., & Lai, Y. (2025). SIRI-MOGA-UNet: A Synergistic Framework for Subsurface Latent Damage Detection in ‘Korla’ Pears via Structured-Illumination Reflectance Imaging and Multi-Order Gated Attention. Spectroscopy Journal, 3(3), 22. https://doi.org/10.3390/spectroscj3030022