Unraveling the Determinants of Platform Economy Adoption in Developing Countries: An Extended Application of the UTAUT2 Model with a Privacy Calculus Perspective
Abstract
:1. Introduction
2. Platform Economy: Global and Local Perspectives
2.1. Defining the Platform Economy
2.2. Global Impact of the Platform Economy
2.3. The Role of Digital Platforms in Developing Countries
2.4. Economic Platforms in Tunisia: Context and Challenges
3. Theoretical Framework and Hypotheses Development
3.1. Behavioral Intention
3.2. Facilitating Conditions
3.3. Habit
3.4. Effort Expectancy
3.5. Performance Expectancy
3.6. Social Influence
3.7. Hedonic Motivation
3.8. Price Value
3.9. Perceived Skill Development
3.10. Perceived Risk
3.11. Trust in Technology
3.12. Privacy Concern
4. Methodology
4.1. Data Collection
4.2. Modeling Analysis
5. Results
6. Discussion
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Rana, N.P.; Khorana, S.; Mikalef, P.; Sharma, A. Assessing Organizational Users’ Intentions and Behavior to AI Integrated CRM Systems: A Meta-UTAUT Approach. Inf. Syst. Front. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Hassan, I.B.; Murad, M.A.A.; El-Shekeil, I.; Liu, J. Extending the UTAUT2 Model with a Privacy Calculus Model to Enhance the Adoption of a Health Information Application in Malaysia. Informatics 2022, 9, 31. [Google Scholar] [CrossRef]
- Doligalski, T.; Goliński, M.; Kozłowski, K. Disruptive Platforms: Markets, Ecosystems, and Monopolists; Routledge: London, UK, 2021; ISBN 9781032075211. [Google Scholar]
- Malik, R.; Visvizi, A.; Skrzek-Lubasińska, M. The Gig Economy: Current Issues, the Debate, and the New Avenues of Research. Sustainability 2021, 13, 5023. [Google Scholar] [CrossRef]
- Kenney, M.; Zysman, J. The Rise of the Platform Economy. Issues Sci. Technol. 2016, 32, 61–69. [Google Scholar]
- Szerb, L.; Komlosi, E.S.; Acs, Z.J.; Lafuente, E.; Song, A.K. The Digital Platform Economy Index 2020; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Van Dijck, J.; Nieborg, D.; Poell, T. Reframing platform power. Internet Policy Rev. 2019, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cusumano, M.A.; Gawer, A.; Yoffie, D.B. The Business of Platforms: Strategy in the Age of Digital Competition, Innovation, and Power; Harper Business: New York, NY, USA, 2019. [Google Scholar]
- Zilberman, A.; Ice, L. Why computer occupations are behind strong STEM employment growth in the 2019–29 decade. Beyond Numbers 2021, 10, 1. [Google Scholar]
- Karelina, E.A. Opportunities for building effective digital platforms and ecosystems in developing countries. E-Management 2020, 3, 59–67. [Google Scholar] [CrossRef]
- Banga, K.; te Velde, D.W. Digitalisation and the Future of Manufacturing in Africa; ODI: London, UK, 2018. [Google Scholar]
- Kathuria, R.; Kedia, M.; Bagchi, K. India’s Platform Economy and Emerging Regulatory Challenges; Indian Council for Research on International Economic Relations: New Delhi, India, 2021. [Google Scholar]
- Datareportal. Digital 2023: Tunisia. 2023. Available online: https://datareportal.com/reports/digital-2023-tunisia (accessed on 17 March 2023).
- United States Agency for International Development (USAID). Tunisia—Information and Communications Technology (ICT). 2023. Available online: https://idea.usaid.gov/cd/tunisia/information-and-communications-technology-ict (accessed on 17 March 2023).
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Rana, N.P.; Jeyaraj, A.; Clement, M.; Williams, M.D. Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Inf. Syst. Front. 2017, 21, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Jaiswal, M. Determinants of acceptance of ERP software training in business schools: Empirical investigation using UTAUT model. Int. J. Manag. Educ. 2016, 14, 248–262. [Google Scholar] [CrossRef]
- Ben Youssef, A.; Dahmani, M.; Ragni, L. ICT Use, Digital Skills and Students’ Academic Performance: Exploring the Digital Divide. Information 2022, 13, 129. [Google Scholar] [CrossRef]
- Dahmani, M. Determinants of the Digital Divide among French Higher Education Teachers. South Asian J. Soc. Stud. Econ. 2021, 12, 10–28. [Google Scholar] [CrossRef]
- Sánchez-Prieto, J.C.; Olmos-Migueláñez, S.; García-Peñalvo, F.J. Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Comput. Hum. Behav. 2016, 55, 519–528. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Chao, C.-M.; Lin, H.-M.; Cheng, B.-W. Nursing staff intentions to continuously use a blended e-learning system from an integrative perspective. Qual. Quant. 2017, 52, 2495–2513. [Google Scholar] [CrossRef]
- Chao, C.-M. Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Zeqiri, A.; Dahmani, M.; Youssef, A.B. Digitalization of the tourism industry: What are the impacts of the new wave of tech-nologies. Balkan Econ. Rev. 2020, 2, 63–82. [Google Scholar]
- Sharma, S.K.; Al-Badi, A.; Rana, N.P.; Al-Azizi, L. Mobile applications in government services (mG-App) from user’s perspectives: A predictive modelling approach. Gov. Inf. Q. 2018, 35, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Laufer, R.S.; Wolfe, M. Privacy as a Concept and a Social Issue: A Multidimensional Developmental Theory. J. Soc. Issues 1977, 33, 22–42. [Google Scholar] [CrossRef]
- Khechine, H.; Lakhal, S.; Ndjambou, P. A meta-analysis of the UTAUT model: Eleven years later. Can. J. Adm. Sci. Rev. Can. Sci. Adm. 2016, 33, 138–152. [Google Scholar] [CrossRef]
- Masmoudi, H.M.; Gargouri, F. “Does blockchain technology matter?”: Understanding consumer purchase intention in a blockchain technology for olive oil context. Int. J. Educ. Sci. 2021, 4, 41–48. [Google Scholar] [CrossRef]
- Nasri, W. An Empirical Study of User Acceptance Behaviours of Internet Banking in Tunisia Using UTAUT2 Model. Int. J. Innov. Digit. Econ. 2021, 12, 16–34. [Google Scholar] [CrossRef]
- Culnan, M.J.; Armstrong, P.K. Information Privacy Concerns, Procedural Fairness, and Impersonal Trust: An Empirical In-vestigation. Organ. Sci. 1999, 10, 104–115. Available online: http://www.jstor.org/stable/2640390 (accessed on 17 March 2023). [CrossRef] [Green Version]
- Singh, N.; Sinha, N. How perceived trust mediates merchant’s intention to use a mobile wallet technology. J. Retail. Consum. Serv. 2020, 52, 101894. [Google Scholar] [CrossRef]
- Sebastián, M.G.d.B.; Antonovica, A.; Guede, J.R.S. What are the leading factors for using Spanish peer-to-peer mobile payment platform Bizum? The applied analysis of the UTAUT2 model. Technol. Forecast. Soc. Chang. 2023, 187, 122235. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, C.; Kizildag, M. Banking “on-the-go”: Examining consumers’ adoption of mobile banking services. Int. J. Qual. Serv. Sci. 2018, 10, 279–295. [Google Scholar] [CrossRef]
- Handayanto, E.; Ambarwati, R. Continuance intention of mobile payment Using modified extending model of acceptance and use of technology. AMCA J. Sci. Technol. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Hasyim, F. Modification of UTAUT2 in assessing the use of E-Money in Surakarta. Islam. Econ. Financ. J. 2022, 1, 114–134. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Abu-Taieh, E.M.; AlHadid, I.; Abu-Tayeh, S.; Masa’deh, R.; Alkhawaldeh, R.S.; Khwaldeh, S.; Alrowwad, A. Continued Intention to Use of M-Banking in Jordan by Integrating UTAUT, TPB, TAM and Service Quality with ML. J. Open Innov. Technol. Mark. Complex. 2022, 8, 120. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.; Algharabat, R. Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. J. Retail. Consum. Serv. 2018, 40, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Kadim, A.; Sunardi, N. Financial Management System (QRIS) based on UTAUT Model Approach in Jabodetabek. Int. J. Artif. Intell. Res. 2021, 6, 1. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Glavee-Geo, R.; Karjaluoto, H. How Relevant Are Risk Perceptions, Effort, and Performance Expectancy in Mobile Banking Adoption? In Research Anthology on Securing Mobile Technologies and Applications; IGI Global: Hershey, PA, USA, 2021; pp. 692–716. [Google Scholar] [CrossRef]
- Huang, D.-H.; Chueh, H.-E. Behavioral intention to continuously use learning apps: A comparative study from Taiwan universities. Technol. Forecast. Soc. Chang. 2022, 177, 121531. [Google Scholar] [CrossRef]
- Zacharis, G.; Nikolopoulou, K. Factors predicting University students’ behavioral intention to use eLearning platforms in the post-pandemic normal: An UTAUT2 approach with ‘Learning Value’. Educ. Inf. Technol. 2022, 27, 12065–12082. [Google Scholar] [CrossRef]
- Arpaci, I. Antecedents and consequences of cloud computing adoption in education to achieve knowledge management. Comput. Hum. Behav. 2017, 70, 382–390. [Google Scholar] [CrossRef]
- Gajendran, R.S.; Harrison, D.A.; Delaney-Klinger, K. Are Telecommuters Remotely Good Citizens? Unpacking Telecommut-ing’s Effects on Performance Via I-Deals and Job Resources. Personnel Psychol. 2015, 68, 353–393. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Lim, W.M.; Ahmed, P.K.; Ali, Y. Giving electronic word of mouth (eWOM) as a prepurchase behavior: The case of online group buying. J. Bus. Res. 2022, 146, 582–604. [Google Scholar] [CrossRef]
- Nikolopoulou, K.; Gialamas, V.; Lavidas, K. Acceptance of mobile phone by university students for their studies: An investigation applying UTAUT2 model. Educ. Inf. Technol. 2020, 25, 4139–4155. [Google Scholar] [CrossRef]
- Alam, M.M.D.; Alam, M.Z.; Rahman, S.A.; Taghizadeh, S.K. Factors influencing mHealth adoption and its impact on mental well-being during COVID-19 pandemic: A SEM-ANN approach. J. Biomed. Inform. 2021, 116, 103722. [Google Scholar] [CrossRef] [PubMed]
- Baptista, G.; Oliveira, T. Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Comput. Hum. Behav. 2015, 50, 418–430. [Google Scholar] [CrossRef]
- Abu Shanab, E.; Rahman, M.S.A.; Al Okaily, M.; Masa’Deh, R. An Empirical Investigation on Acceptance of Mobile Payment System Services in Jordan: Extending UTAUT2 Model with Security and Privacy. Int. J. Bus. Inf. Syst. 2020, 1, 1. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, W.; Eng, H.S. A systematic review of UTAUT2 constructs’ analysis among MSMEs in non-OECD countries. J. Sci. Technol. Policy Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Lin, X.; Suanpong, K.; Ruangkanjanases, A.; Lim, Y.-T.; Chen, S.-C. Improving the Sustainable Usage Intention of Mobile Payments: Extended Unified Theory of Acceptance and Use of Technology Model Combined With the Information System Success Model and Initial Trust Model. Front. Psychol. 2022, 12, 634911. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Mollik, A.T.; Johns, R.; Rahman, M.S. M-payment adoption for bottom of pyramid segment: An empirical investigation. Int. J. Bank Mark. 2019, 37, 362–381. [Google Scholar] [CrossRef]
- Ben Youssef, A.; Dahmani, M.; Omrani, N. Students’ E-Skills, Organizational Change and Diversity of Learning Process: Evidence from French Universities in 2010; Discussion Paper No. 12-031; ZEW—Centre for European Economic Research: Mannheim, Germany, 2012. [Google Scholar]
- Aggarwal, V.; Dash, S.; Yadav, P.D.; Gupta, A.K. Role of ICT enabled Cloud Learning Management System tools in Fostering Entrepreneurship Amongst Youth. In Proceedings of the 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), Gautam Buddha Nagar, India, 23–25 February 2022; pp. 508–515. [Google Scholar] [CrossRef]
- Osei, H.V.; Kwateng, K.O.; Boateng, K.A. Integration of personality trait, motivation and UTAUT 2 to understand e-learning adoption in the era of COVID-19 pandemic. Educ. Inf. Technol. 2022, 27, 10705–10730. [Google Scholar] [CrossRef]
- Lim, T.; Lim, B.C.; Leong, C.; Phang, I.G.; Foong, W.H. Consumer adoption of on-demand digital platforms: An integrated model. Glob. Bus. Organ. Excel. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Yang, Q.; Pang, C.; Liu, L.; Yen, D.C.; Tarn, J.M. Exploring consumer perceived risk and trust for online payments: An empirical study in China’s younger generation. Comput. Hum. Behav. 2015, 50, 9–24. [Google Scholar] [CrossRef]
- Ou, C.-C.; Chen, K.-L.; Tseng, W.-K.; Lin, Y.-Y. A Study on the Influence of Conformity Behaviors, Perceived Risks, and Customer Engagement on Group Buying Intention: A Case Study of Community E-Commerce Platforms. Sustainability 2022, 14, 1941. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, J.; Yi, F. A study on users’ willingness to accept mobility as a service based on UTAUT model. Technol. Forecast. Soc. Chang. 2020, 157, 120066. [Google Scholar] [CrossRef]
- Merhi, M.; Hone, K.; Tarhini, A. A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technol. Soc. 2019, 59, 101151. [Google Scholar] [CrossRef]
- Higueras-Castillo, E.; Liébana-Cabanillas, F.J.; Villarejo-Ramos, F. Intention to use e-commerce vs physical shopping. Difference between consumers in the post-COVID era. J. Bus. Res. 2023, 157, 113622. [Google Scholar] [CrossRef]
- Iwaya, L.H.; Babar, M.A.; Rashid, A.; Wijayarathna, C. On the privacy of mental health apps. Empir. Softw. Eng. 2022, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Sahut, J.M.; Lissillour, R. The adoption of remote work platforms after the Covid-19 lockdown: New approach, new evidence. J. Bus. Res. 2023, 154, 113345. [Google Scholar] [CrossRef] [PubMed]
- Bleier, A.; Goldfarb, A.; Tuckerc, C. Consumer privacy and the future of data-based innovation and marketing. Int. J. Res. Mark. 2020, 37, 466–480. [Google Scholar] [CrossRef]
- Malhotra, N.K.; Kim, S.S.; Agarwal, J. Internet Users’ Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model. Inf. Syst. Res. 2004, 15, 336–355. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Luo, X.R.; Carroll, J.M.; Rosson, M.B. The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decis. Support Syst. 2011, 51, 42–52. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 4. Oststeinbek: SmartPLS. 2022. Available online: https://www.smartpls.com. (accessed on 24 January 2023).
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Springer: Heidelberg/Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Altman, I. Privacy: A Conceptual Analysis. Environ. Behav. 1976, 8, 141. [Google Scholar] [CrossRef]
- Ben Youssef, A.; Dahmani, M.; Zeqiri, A. Do e-skills enhance use of e-services in the hospitality industry? A conditional mixed-process approach. Int. J. Data Netw. Sci. 2021, 5, 519–530. [Google Scholar] [CrossRef]
- Suo, W.-J.; Goi, C.-L.; Goi, M.-T.; Sim, A.K.S. Factors Influencing Behavioural Intention to Adopt the QR-Code Payment. Int. J. Asian Bus. Inf. Manag. 2021, 13, 1–22. [Google Scholar] [CrossRef]
- Zeqiri, A.; Dahmani, M.; Ben Youssef, A. Determinants of the use of e-services in the hospitality industry in Kosovo. Int. J. Data Netw. Sci. 2021, 5, 369–382. [Google Scholar] [CrossRef]
Demographic | Characteristics | Frequency | Percentage |
---|---|---|---|
Gender | Male | 448 | 50.17 |
Female | 445 | 49.83 | |
Age | Less than 20 years | 61 | 6.82% |
20–29 years | 324 | 36.24% | |
30–39 years | 253 | 28.30% | |
40–49 years | 211 | 23.60% | |
50 years and above | 45 | 5.03% | |
Education level | No formal education | 28 | 3.14% |
Primary education | 111 | 12.43% | |
Secondary education | 298 | 33.37% | |
Tertiary education | 456 | 51.06% | |
Employment status | Student | 302 | 33.82% |
Employee | 212 | 23.74% | |
Self-employed | 245 | 27.44% | |
Retired | 17 | 1.90% | |
Unemployed | 117 | 13.10% | |
Use frequency | Less than 1 h per week | 13 | 1.46% |
1–5 h | 171 | 19.15% | |
6–9 h | 244 | 27.32% | |
10–14 h | 203 | 22.73% | |
More than 15 h | 262 | 29.34% |
Constructs | Items | Loadings | Cronbach’s Alpha | rho_A | CR | AVE | VIF |
---|---|---|---|---|---|---|---|
Actual use of economic platforms (AU) | 0.821 | 0.897 | 0.873 | 0.580 | |||
AU1 | 0.715 | 1.528 | |||||
AU2 | 0.706 | 1.519 | |||||
AU3 | 0.770 | 1.728 | |||||
AU4 | 0.729 | 1.551 | |||||
AU5 | 0.876 | 1.972 | |||||
Behavioral intention to use economic platforms (BI) | 0.744 | 0.754 | 0.837 | 0.563 | |||
BI1 | 0.701 | 1.479 | |||||
BI2 | 0.739 | 1.459 | |||||
BI3 | 0.808 | 1.610 | |||||
BI4 | 0.747 | 1.297 | |||||
Effort expectancy (EE) | 0.757 | 0.761 | 0.845 | 0.576 | |||
EE1 | 0.729 | 1.225 | |||||
EE2 | 0.779 | 1.953 | |||||
EE3 | 0.804 | 2.045 | |||||
EE4 | 0.723 | 1.381 | |||||
Facilitating conditions (FC) | 0.790 | 0.910 | 0.850 | 0.587 | |||
FC1 | 0.763 | 2.111 | |||||
FC2 | 0.718 | 1.567 | |||||
FC3 | 0.748 | 1.962 | |||||
FC4 | 0.831 | 1.297 | |||||
Hedonic motivation (HM) | 0.732 | 0.735 | 0.849 | 0.652 | |||
HM1 | 0.770 | 1.391 | |||||
HM2 | 0.842 | 1.638 | |||||
HM3 | 0.808 | 1.429 | |||||
Habit (HT) | 0.792 | 0.795 | 0.878 | 0.707 | |||
HT1 | 0.793 | 1.484 | |||||
HT2 | 0.871 | 1.924 | |||||
HT3 | 0.856 | 1.806 | |||||
Privacy concern (PC) | 0.719 | 0.736 | 0.876 | 0.779 | |||
PC1 | 0.860 | 1.461 | |||||
PC2 | 0.906 | 1.461 | |||||
Performance expectancy (PE) | 0.801 | 0.817 | 0.869 | 0.625 | |||
PE1 | 0.707 | 1.669 | |||||
PE2 | 0.850 | 2.047 | |||||
PE3 | 0.793 | 1.625 | |||||
PE4 | 0.806 | 1.742 | |||||
Perceived risk (PR) | 0.742 | 0.753 | 0.885 | 0.794 | |||
PR1 | 0.874 | 1.534 | |||||
PR2 | 0.908 | 1.534 | |||||
Perceived skill development (PSD) | 0.819 | 0.887 | 0.887 | 0.726 | |||
PSD1 | 0.901 | 2.041 | |||||
PSD2 | 0.895 | 1.921 | |||||
PSD3 | 0.751 | 1.649 | |||||
Price value (PV) | 0.747 | 0.753 | 0.856 | 0.665 | |||
PV1 | 0.817 | 1.585 | |||||
PV2 | 0.776 | 1.367 | |||||
PV3 | 0.851 | 1.617 | |||||
Social influence (SI) | 0.771 | 0.773 | 0.854 | 0.594 | |||
SI1 | 0.775 | 2.090 | |||||
SI2 | 0.823 | 2.253 | |||||
SI3 | 0.745 | 1.516 | |||||
SI4 | 0.736 | 1.534 | |||||
Trust in technology (TT) | 0.836 | 0.836 | 0.901 | 0.753 | |||
TT1 | 0.835 | 1.623 | |||||
TT2 | 0.883 | 2.316 | |||||
TT3 | 0.884 | 2.396 |
AU | EE | FC | HT | HM | BI | PR | PSD | PE | PV | PC | SI | TT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AU | 0.762 | ||||||||||||
EE | 0.345 | 0.759 | |||||||||||
FC | 0.077 | 0.159 | 0.766 | ||||||||||
HT | 0.411 | 0.646 | 0.106 | 0.841 | |||||||||
HM | 0.192 | 0.145 | −0.015 | 0.171 | 0.807 | ||||||||
BI | 0.386 | 0.416 | 0.110 | 0.458 | 0.136 | 0.750 | |||||||
PR | 0.418 | 0.430 | 0.066 | 0.547 | 0.138 | 0.394 | 0.891 | ||||||
PSD | 0.506 | 0.192 | 0.098 | 0.189 | 0.137 | 0.223 | 0.169 | 0.852 | |||||
PE | 0.372 | 0.313 | 0.053 | 0.328 | 0.197 | 0.643 | 0.302 | 0.153 | 0.791 | ||||
PV | 0.321 | 0.339 | 0.096 | 0.330 | −0.013 | 0.480 | 0.312 | 0.123 | 0.456 | 0.815 | |||
PC | 0.271 | 0.194 | 0.021 | 0.225 | 0.193 | 0.431 | 0.255 | 0.108 | 0.703 | 0.315 | 0.883 | ||
SI | 0.462 | 0.308 | 0.073 | 0.271 | 0.330 | 0.278 | 0.283 | 0.265 | 0.330 | 0.205 | 0.289 | 0.770 | |
TT | 0.310 | 0.297 | 0.092 | 0.254 | 0.371 | 0.230 | 0.256 | 0.148 | 0.281 | 0.149 | 0.231 | 0.593 | 0.868 |
AU | EE | FC | HT | HM | BI | PR | PSD | PE | PV | PC | SI | TT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AU | |||||||||||||
EE | 0.375 | ||||||||||||
FC | 0.074 | 0.182 | |||||||||||
HT | 0.459 | 0.811 | 0.113 | ||||||||||
HM | 0.234 | 0.211 | 0.053 | 0.224 | |||||||||
BI | 0.462 | 0.538 | 0.142 | 0.595 | 0.184 | ||||||||
PR | 0.501 | 0.563 | 0.073 | 0.722 | 0.180 | 0.525 | |||||||
PSD | 0.604 | 0.231 | 0.111 | 0.221 | 0.179 | 0.266 | 0.214 | ||||||
PE | 0.440 | 0.382 | 0.065 | 0.403 | 0.260 | 0.778 | 0.386 | 0.168 | |||||
PV | 0.392 | 0.433 | 0.119 | 0.428 | 0.079 | 0.636 | 0.421 | 0.153 | 0.575 | ||||
PC | 0.341 | 0.268 | 0.040 | 0.299 | 0.258 | 0.564 | 0.346 | 0.133 | 0.458 | 0.427 | |||
SI | 0.562 | 0.408 | 0.081 | 0.347 | 0.437 | 0.359 | 0.369 | 0.334 | 0.421 | 0.270 | 0.385 | ||
TT | 0.355 | 0.377 | 0.087 | 0.313 | 0.471 | 0.290 | 0.322 | 0.180 | 0.342 | 0.188 | 0.295 | 0.735 |
Original UTAUT2 | UTAUT2 with Privacy Calculus Model | |||||
---|---|---|---|---|---|---|
Hyp. | Structural Path | Path Coef. (β) | T Statistics | Path Coef. (β) | T Statistics | Results |
Dependent variable: Behavioral intention | ||||||
0.227 | 0.290 | |||||
0.226 | 0.287 | |||||
H2a | Facilitating conditions | 0.031 | 1.398 (0.021) | 0.031 | 1.447 (0.020) | Not Supported |
H3a | Habit | 0.183 *** | 6.604 (0.028) | 0.183 *** | 6.745 (0.027) | Supported |
H4a | Effort expectancy | 0.078 *** | 2.917 (0.027) | 0.076 *** | 2.823 (0.027) | Supported |
H5 | Performance expectancy | 0.472 *** | 19.854 (0.024) | 0.472 *** | 19.996 (0.024) | Supported |
H6a | Social influence | −0.007 | 0.350 (0.022) | −0.007 | 0.333 (0.022) | Not Supported |
H7 | Hedonic motivation | −0.004 | 0.250 (0.019) | −0.004 | 0.280 (0.019) | Not Supported |
H8 | Price value | 0.167 *** | 7.122 (0.023) | 0.167 *** | 7.078 (0.024) | Supported |
Dependent variable: Actual Use | ||||||
0.518 | 0.521 | |||||
0.516 | 0.519 | |||||
H1 | Behavioral intention | 0.250 *** | 9.540 (0.026) | 0.159 *** | 5.563 (0.029) | Supported |
H2b | Facilitating conditions | 0.019 | 0.722 (0.027) | 0.011 | 0.471 (0.024) | Not Supported |
H3b | Habit | 0.304 *** | 11.288 (0.027) | 0.168 *** | 5.624 (0.030) | Supported |
H10a | Perceived risk | 0.203 *** | 7.416 (0.027) | Supported | ||
H11a | Trust in technology | 0.160 *** | 6.539 (0.025) | Supported | ||
H12 | Privacy concern | 0.075 *** | 2.875 (0.026) | Supported | ||
New relationships incorporated into UTAUT2 | ||||||
H3c | Habit→performance expectancy | 0.136 *** | 3.805 (0.036) | Supported | ||
H4c | Effort expectancy→performance expectancy | 0.115 *** | 3.285 (0.035) | Supported | ||
H4b | Effort expectancy→habit | 0.646 *** | 42.755 (0.015) | Supported | ||
H6b | Social influence→trust in technology | 0.567 *** | 26.935 (0.021) | Supported | ||
H9 | Perceived skill development→actual use | 0.082 *** | 4.080 (0.020) | Supported | ||
H10b | Perceived risk→trust in technology | 0.096 *** | 4.341 (0.022) | Supported | ||
H10c | Perceived risk→privacy concern | 0.256 *** | 10.024 (0.025) | Supported | ||
H10d | Perceived risk→performance expectancy | 0.133 *** | 4.402 (0.030) | Supported | ||
H11b | Trust in technology→performance expectancy | 0.178 *** | 6.912 (0.026) | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahmani, M.; Ben Youssef, A. Unraveling the Determinants of Platform Economy Adoption in Developing Countries: An Extended Application of the UTAUT2 Model with a Privacy Calculus Perspective. Platforms 2023, 1, 34-52. https://doi.org/10.3390/platforms1010005
Dahmani M, Ben Youssef A. Unraveling the Determinants of Platform Economy Adoption in Developing Countries: An Extended Application of the UTAUT2 Model with a Privacy Calculus Perspective. Platforms. 2023; 1(1):34-52. https://doi.org/10.3390/platforms1010005
Chicago/Turabian StyleDahmani, Mounir, and Adel Ben Youssef. 2023. "Unraveling the Determinants of Platform Economy Adoption in Developing Countries: An Extended Application of the UTAUT2 Model with a Privacy Calculus Perspective" Platforms 1, no. 1: 34-52. https://doi.org/10.3390/platforms1010005