Genetic Variants and Heat Shock Proteins: Unraveling Their Interplay in Neurodegenerative Sclerosis—A Comprehensive Review
Abstract
1. Introduction
2. Protein Quality Control (PQC)
3. Heat Shock Protein
3.1. Heat Shock Protein Intracellular (CI) and Extracellular (CE)
3.2. Modulation Carried out by HSPs as the Protein Quality Control
3.3. System of Protein Degradation Involving HSPs
3.3.1. Chaperone-Assisted Selective Autophagy
3.3.2. Chaperone-Mediated Autophagy (CMA)
4. Complex of HSPA, HSPC, and Their Co-Chaperones in Neurodegenerative Sclerosis
4.1. Pathogenic Genetic Variants and Amyotrophic Lateral Sclerosis
Mutated Gene | Probable Dysfunctions | References |
---|---|---|
VAPB; CHMP2B; VCP | Affects the formation of autophagosomes. | [11,78] |
SQSTM1; OPTN; UBQLN2; VAPB | Impairs the formation of autophagosomes and ubiquitination. | [11,78] |
DCTN + FUS CHMP2B; | Impairs the retrograde transport of autolysosomes, Stops the formation of autolysosomes. | [11,78] |
NEK1 + C21orf2 or NEK1 + VAPB | DNA damage repairs are not complete, and the maintenance of the cytoskeletal system is not impaired. | [79] |
TBK1 + OPTN + SQSTM1 TBK1 + FUS TBK1 + TARDBP TBK1 + C9orf72 | Impairs the autophagy, mitophagy process, and innate immunity | [79] |
CCNF; TUBA4A; VCP; ALS2 | Cytoskeletal dysfunction | [79] |
UBQLN2; SPG11; KIF5A; PFN1 | Dysfunction in RNA processing | [79] |
DNAJC7(TPR2) | Impaired processing of RNA, vesicular traffic, and transposons suppression contribute to cell toxicity, and inhibit downstream of TDP-43 clearance. Folding error of polypeptides, aggregation aberrant protein. | [28,44,73,74] |
4.2. Pathogenic Genetic Variants and Multiple Sclerosis
5. Approaches Therapeutic in Neurodegenerative Diseases, ALS, and MS
6. ARBs and New Therapeutic Targets for Multiple Sclerosis
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinger, S.; Dubey, A.R.; Kumar, P.; Jagtap, Y.A.; Choudhary, A.; Kumar, A.; Prajapati, V.K.; Dhiman, R.; Mishra, A. Molecular Chaperones’ Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023, 12, 1302–1332. [Google Scholar] [CrossRef]
- Kovacs, G.G. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 2017, 145, 301–307. [Google Scholar] [CrossRef]
- Voronin, M.V.; Abramova, E.V.; Verbovaya, E.R.; Vakhitova, Y.V.; Seredenin, S.B. Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int. J. Mol. Sci. 2023, 24, 823–871. [Google Scholar] [CrossRef]
- Tedesco, B.; Ferrari, V.; Cozzi, M.; Chierichetti, M.; Casarotto, E.; Pramaggiore, P.; Mina, F.; Galbiati, M.; Rusmini, P.; Crippa, V.; et al. The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int. J. Mol. Sci. 2022, 23, 11759–11784. [Google Scholar] [CrossRef]
- Cristofani, R.; Crippa, V.; Cicardi, M.E.; Tedesco, B.; Ferrari, V.; Chierichetti, M.; Casarotto, E.; Piccolella, M.; Messi, E.; Galbiati, M.; et al. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front. Aging Neurosci. 2020, 12, 191–212. [Google Scholar] [CrossRef] [PubMed]
- Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor Neuron Susceptibility in ALS/FTD. Front. Neurosci. 2019, 13, 532–569. [Google Scholar] [CrossRef]
- Lyon, M.S.; Milligan, C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci. Lett. 2019, 711, 134462–134476. [Google Scholar] [CrossRef]
- Deeb, O.; Nabulsi, M. Exploring Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) as Neurodegenerative Diseases and their Treatments: A Review Study. Curr. Top. Med. Chem. 2020, 20, 2391–2403. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar] [CrossRef]
- Ueda, T.; Ito, T.; Inden, M.; Kurita, H.; Yamamoto, A.; Hozumi, I. Stem Cells from Human Exfoliated Deciduous Teeth-Conditioned Medium (SHED-CM) is a Promising Treatment for Amyotrophic Lateral Sclerosis. Front. Pharmacol. 2022, 13, 805379–805394. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Perera, N.D.; Beart, P.M.; Turner, B.J.; Shabanpoor, F. Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells 2020, 9, 2413–2443. [Google Scholar] [CrossRef] [PubMed]
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499849 (accessed on 7 September 2022).
- Kingwell, E.; Zhu, F.; Evans, C.; Duggan, T.; Oger, J.; Tremlett, H. Causes that Contribute to the Excess Mortality Risk in Multiple Sclerosis: A Population-Based Study. Neuroepidemiology 2020, 54, 131–139. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Rovira, À.; Auger, C. Beyond McDonald: Updated perspectives on MRI diagnosis of multiple sclerosis. Expert Rev. Neurother. 2021, 21, 895–911. [Google Scholar] [CrossRef]
- Xu, L.; Liu, T.; Liu, L.; Yao, X.; Chen, L.; Fan, D.; Zhan, S.; Wang, S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. 2020, 267, 944–953. [Google Scholar] [CrossRef]
- Dietrich-Neto, F.; Callegaro, D.; Dias-Tosta, E.; Silva, H.A.; Ferraz, M.E.; Lima, J.M.B.D.; Oliveira, A.S. Amyotrophic lateral sclerosis in Brazil: 1998 national survey. Arq. Neuropsiquiatr. 2000, 58, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.C.; Casulari, L.A.; Novaes, M.R.C.G. Ethnic and demographic incidence of amyotrophic lateral sclerosis (ALS) in Brazil: A population based study. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 275–281. [Google Scholar] [CrossRef]
- MSIF. The Multiple Sclerosis International Federation. Atlas of MS. 2020, 3rd Edition (September 2020). Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf. Available online: https://www.msif.org/resource/atlas-of-ms-2020/ (accessed on 5 August 2025).
- Pereira, J.C.; Costa, C.P.; Costa, C.C.P. New insights of miRNAs dysregulation in the molecular pathological basis of neurodegenerative sclerosis: A systematic review. Genet. Mol. Res. 2021, 20, GMR18843. [Google Scholar] [CrossRef]
- Hunter, S.F. Overview and diagnosis of multiple sclerosis. Am. J. Manag. 2016, 22, s141–s150. [Google Scholar]
- BRASIL. Portaria Conjunta nº 1, de 07 de janeiro de 2022. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Esclerose Múltipla. 2022. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/saes/2022/poc0001_31_01_2022.html (accessed on 10 October 2023).
- Aljthalin, R.; Albalawi, R.; Alyahya, A.; Alhathlool, R.; Alhashemi, M. Multiple sclerosis and amyotrophic lateral sclerosis: Is there an association or a red flag? A case report and literature review. BMC Neurol. 2024, 24, 307. [Google Scholar] [CrossRef] [PubMed]
- Noori, L.; Saqagandomabadi, V.; Di Felice, V.; David, S.; Caruso Bavisotto, C.; Bucchieri, F.; Cappello, F.; Conway de Macario, E.; Macario, A.J.L.; Scalia, F. Putative Roles and Therapeutic Potential of the Chaperone System in Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Cells 2024, 13, 217. [Google Scholar] [CrossRef]
- Haki, M.; Al-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-Hussaniy, H.A. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef]
- Gupta, D.; Vagha, S.; Dhingra, H.; Shirsath, H. Advances in Understanding and Treating Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Cureus 2023, 15, e48691. [Google Scholar] [CrossRef]
- Ramirez, T.N.; Hansberg, W. Chaperonas pequeñas y diméricas. Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. TIP Rev. Espec. En. Cienc. Químico-Biológicas 2020, 23, 1–13. [Google Scholar] [CrossRef]
- Farhan, S.M.K.; Howrigan, D.P.; Abbott, L.E.; Klim, J.R.; Topp, S.D.; Byrnes, A.E.; Churchhouse, C.; Phatnani, H.; Smith, B.N.; Rampersaud, E.; et al. Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat. Neurosci. 2019, 22, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.X.; Conn, P.M. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol. Rev. 2018, 2, 697–725. [Google Scholar] [CrossRef]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188–eaav7213. [Google Scholar] [CrossRef]
- Cotsapas, C.; Mitrovic, M. Genome-wide association studies of multiple sclerosis. Clin. Transl. Immunol. 2018, 7, e1018–e1027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cooper-Knock, J.; Weimer, A.K.; Shi, M.; Moll, T.; Marshall, J.N.G.; Harvey, C.; Nezhad, H.G.; Franklin, J.; Souza, C.D.S.; et al. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 2022, 110, 992–1008.e11. [Google Scholar] [CrossRef]
- Crepaldi, M.A.; Schmidt, B.; Noal, D.S.; Bolze, S.D.A.; Gabarra, L.M. Terminalidade, Morte E Luto Na Pandemia De COVID-19: Demandas Psicológicas Emergentes E Implicações Práticas. Estud. Psicol. 2020, 37, e200090. [Google Scholar] [CrossRef]
- Estrela, C. Metodologia Científica: Ciência, Ensino, Pesquisa [Recurso Eletrônico], 3rd ed.; Artes Médicas: Porto Alegre, Brazil, 2018. [Google Scholar]
- Pautasso, M. The structure and conduct of a narrative literature review. In A Guide to the Scientific Career: Virtues, Communication, Research and Academic, Writing; Shoja, M., Arynchyna, A., Loukas, M., Anthony, V.D’A., Buerger, S.M., Karl, M.R., Tubbs, S., Eds.; Wiley online Library: Hoboken, NJ, USA, 2019; Volume 31, pp. 299–310. [Google Scholar] [CrossRef]
- Geraghty, N.J.; Satapathy, S.; Wilson, M.R. The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 2022, 11, 3907–3926. [Google Scholar] [CrossRef] [PubMed]
- Chaplot, K.; Jarvela, T.S.; Lindeberg, I. Secreted chaperones in Neurodegeneration. Front. Aging Neurosci. Sec. Cell. Mol. Mech. Brain-Aging 2020, 12, 268–291. [Google Scholar] [CrossRef] [PubMed]
- Alves Filho, M. Chaperonas, as ‘damas de companhia’ das proteínas. J. Da Unicamp 2008, 13–19, 9–10. Available online: https://unicamp.br/unicamp/unicamp_hoje/ju/outubro2008/ju413_pag09.php (accessed on 14 October 2023).
- Suzuki, Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev. 2021, 43, 45–54. [Google Scholar] [CrossRef]
- Ritossa, F.A. New puffing pattern induced by temperature shock and DNP in drosophila. Experientia 1962, 18, 571–573. [Google Scholar] [CrossRef]
- Ananthan, J.; Goldberg, A.L.; Voellmy, R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986, 232, 522–524. [Google Scholar] [CrossRef]
- Welch, W.J. The role of heat-shock proteins as molecular chaperones. Curr. Opin. Cell Biol. 1991, 3, 1033–1038. [Google Scholar] [CrossRef]
- Mansilla, M.J.; Montalban, X.; Espejo, C. Heat shock protein 70: Roles in multiple sclerosis. Mol. Med. 2012, 18, 1018–1028. [Google Scholar] [CrossRef]
- Dilliott, A.A.; Andary, C.M.; Stoltz, M.; Petropavlovskiy, A.A.; Farhan, S.M.K.; Duennwald, M.L. DnaJC7 in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2022, 23, 4076–4090. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bansal, A.; Hashimoto-Torii, K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci. Lett. 2020, 716, 134678–134691. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef]
- Cristofani, R.; Rusmini, P.; Galbiati, M.; Cicardi, M.E.; Ferrari, V.; Tedesco, B.; Casarotto, E.; Chierichetti, M.; Messi, E.; Piccolella, M.; et al. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front. Neurosci. 2019, 13, 796–809. [Google Scholar] [CrossRef]
- Stetler, R.A.; Gao, Y.; Signore, A.P.; Cao, G.; Chen, J. HSP27: Mechanisms of cellular protection against neuronal injury. Curr. Mol. Med. 2009, 9, 863–872. [Google Scholar] [CrossRef]
- Truettner, J.S.; Hu, K.; Liu, C.L.; Dietrich, W.D.; Hu, B. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res. 2009, 1249, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Tang, H.; Mitchell-Silbaugh, K.; Fang, X.; Han, Z.; Ouyang, K. Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Front. Mol. Biosci. 2020, 7, 73–82. [Google Scholar] [CrossRef]
- Ishida, R.; Okamoto, T.; Motojima, F.; Kubota, H.; Takahashi, H.; Tanabe, M.; Oka, T.; Kitamura, A.; Kinjo, M.; Yoshida, M.; et al. Physicochemical Properties of the Mammalian Molecular Chaperone HSP60. Int. J. Mol. Sci. 2018, 19, 489–505. [Google Scholar] [CrossRef] [PubMed]
- Daugaard, M.; Rohde, M.; Jäättelä, M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007, 581, 3702–3710. [Google Scholar] [CrossRef]
- Kevei, É.; Pokrzywa, W.; Hoppe, T. Repair or destruction—An intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett. 2017, 591, 2616–2635. [Google Scholar] [CrossRef]
- Rutledge, B.S.; Choy, W.Y.; Duennwald, M.L. Folding or holding? -Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J. Biol. Chem. 2022, 298, 101905–101918. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pastor, R.; Burchfiel, E.T.; Thiele, D.J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 4–19. [Google Scholar] [CrossRef]
- Wu, K.; Minshull, T.C.; Radford, S.E.; Calabrese, A.N.; Bardwell, J.C.A. Trigger factor both holds and folds its client proteins. Nat. Commun. 2022, 13, 4126. [Google Scholar] [CrossRef] [PubMed]
- Bohush, A.; Bieganowski, P.; Filipek, A. Hsp90 e suas co-chaperonas em doenças neurodegenerativas. Rev. Int. De. Ciências Mol. 2019, 20, 4976. [Google Scholar] [CrossRef]
- Wang, L.; Bergkvist, L.; Kumar, R.; Winblad, B.; Pavlov, P.F. Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021, 10, 2596–2624. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, R.; Erbse, A.H.; Bukau, B.; Mayer, M.P. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat. Struct. Mol. Biol. 2006, 18, 345–351. [Google Scholar] [CrossRef]
- Tiroli-Cepeda, A.O.; Seraphim, T.V.; Pinheiro, G.M.S.; Souto, D.E.P.; Kubota, L.T.; Borges, J.C.; Barbosa, L.R.S.; Ramos, C.H.I. Studies on the effect of the J-domain on the substrate binding domain (SBD) of Hsp70 using a chimeric human J-SBD polypeptide. Int. J. Biol. Macromol. 2019, 124, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, B.; Vendredy, L.; Timmerman, V.; Poletti, A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023, 19, 1619–1641. [Google Scholar] [CrossRef]
- Arndt, V.; Dick, N.; Tawo, R.; Dreiseidler, M.; Wenzel, D.; Hesse, M.; Fürst, D.O.; Saftig, P.; Saint, R.; Fleischmann, B.K.; et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 2010, 20, 143–148. [Google Scholar] [CrossRef]
- Ulbricht, A.; Eppler, F.J.; Tapia, V.E.; van der Ven, P.F.; Hampe, N.; Hersch, N.; Vakeel, P.; Stadel, D.; Haas, A.; Saftig, P.; et al. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr. Biol. 2013, 23, 430–435. [Google Scholar] [CrossRef]
- Cicardi, M.E.; Cristofani, R.; Rusmini, P.; Meroni, M.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Piccolella, M.; Messi, E.; Galbiati, M.C.; et al. Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells. Sci. Rep. 2018, 8, 12390–12406. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Jabir, M.S.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.; Klionsky, D.J. The beneficial role of autophagy in multiple sclerosis: Yes, or No? Autophagy 2024, 20, 259–274. [Google Scholar] [CrossRef]
- Yao, R.; Shen, J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm 2023, 4, e347–e374. [Google Scholar] [CrossRef]
- Kirchner, P.; Bourdenx, M.; Madrigal-Matute, J.; Tiano, S.; Diaz, A.; Bartholdy, B.A.; Will, B.; Cuervo, A.M. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019, 17, e3000301–e3000328. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, B.; Liu, W.; Xu, Q.; Hou, L.; Song, J.; Guo, Q.; Li, N. Dysfunction of chaperone-mediated autophagy in human diseases. Mol. Cell Biochem. 2021, 476, 1439–1454. [Google Scholar] [CrossRef]
- Arosio, A.; Cristofani, R.; Pansarasa, O.; Crippa, V.; Riva, C.; Sirtori, R.; Rodriguez-Menendez, V.; Riva, N.; Gerardi, F.; Lunetta, C.; et al. HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 51–62. [Google Scholar] [CrossRef]
- Hervás, R.; Oroz, J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int. J. Mol. Sci. 2020, 21, 9186–9210. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Hu, J.; Arogundade, O.A.; Goginashvili, A.; Vazquez-Sanchez, S.; Diedrich, J.K.; Gu, J.; Blum, J.; Oung, S.; Ye, Q.; et al. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat. Cell Biol. 2022, 24, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Tohnai, G.; Nakamura, R.; Atsuta, N.; Nakatochi, M.; Hayashi, N.; Ito, D.; Watanabe, H.; Watanabe, H.; Katsuno, M.; Izumi, Y.; et al. Mutation screening of the DNAJC7 gene in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging. 2022, 113, 131–136. [Google Scholar] [CrossRef]
- He, J.; Ma, X.; Yu, W.; Tang, L.; Fu, J.; Liu, X.; Ye, S.; Wan, M.; Fan, D. Validation of the pathogenic role of rare DNAJC7 variants in Chinese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 2021, 106, 314.e1–314.e6. [Google Scholar] [CrossRef]
- Chen, H.J.; Mitchell, J.C.; Novoselov, S.; Miller, J.; Nishimura, A.L.; Scotter, E.L.; Vance, C.A.; Cheetham, M.E.; Shaw, C.E. The heat shock response plays an important role in TDP-43 clearance: Evidence for dysfunction in amyotrophic lateral sclerosis. Brain 2016, 139, 1417–1432. [Google Scholar] [CrossRef]
- Mansilla, M.J.; Comabella, M.; Río, J.; Castilló, J.; Castillo, M.; Martin, R.; Montalban, X.; Espejo, C. Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity 2014, 47, 127–133. [Google Scholar] [CrossRef]
- Sokolowski, I.; Kucharska-Lusina, A.; Miller, E.; Majsterek, I. Exploring the mRNA and Plasma Protein Levels of BDNF, NT4, SIRT1, HSP27, and HSP70 in Multiple Sclerosis Patients and Healthy Controls. Int. J. Mol. Sci. 2023, 24, 16176–16191. [Google Scholar] [CrossRef]
- Sánchez-Vidaña, D.I.; Li, J.; Abokyi, S.; Chan, J.N.; Ngai, S.P.; Lau, B.W. In vitro methods in autophagy research: Applications in neurodegenerative diseases and mood disorders. Front. Mol. Neurosci. 2023, 16, 1168948–1168977. [Google Scholar] [CrossRef]
- Kirola, L.; Mukherjee, A.; Mutsuddi, M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol. Neurobiol. 2022, 59, 5673–5694. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Deng, M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front. Neurosci. 2023, 12, 1170996. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, X.; Liu, Q.; Zhang, K.; Liu, S.; Wang, Z.; Yang, X.; Shang, L.; Cui, L.; Zhang, X. Mutations of DNAJC7 are rare in Chinese amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Jih, K.Y.; Tsai, P.C.; Tsai, Y.S.; Liao, Y.C.; Lee, Y.C. Rapid progressive ALS in a patient with a DNAJC7 loss-of-function mutation. Neurol. Genet. 2020, 6, e503. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, Z.; Yuan, Y.; Ni, J.; Li, W.; Hu, Y.; Liu, P.; Hou, X.; Huang, L.; Jiao, B.; et al. A Novel Potentially Pathogenic Rare Variant in the DNA JC7 Gene Identified in Amyotrophic Lateral Sclerosis Patients From Mainland China. Front. Genet. 2020, 24, 821. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, X.; Wei, Q.; Lin, J.; Yang, T.; Xiao, Y.; Jiang, Q.; Li, C.; Shang, H. Rare DNAJC7 Variants May Play a Minor Role in Chinese Patients with ALS. Mol. Neurobiol. 2024, 61, 2265–2269. [Google Scholar] [CrossRef] [PubMed]
- Rooney, J.P.K.; Geoghegan, G.; O’Reilly, F.; Heverin, M.; Bose-O’Reilly, S.; Casale, F.; Chio, A.; Günther, K.; Schuster, J.; Klopstock, T. Serum heat shock protein concentrations are not associated with amyotrophic lateral sclerosis risk or survival in three European populations. Amyotroph. Lateral Scler. Front. Degener. 2024, 25, 751–759. [Google Scholar] [CrossRef]
- Miyazaki, D.; Nakamura, A.; Hineno, A.; Kobayashi, C.; Kinoshita, T.; Yoshida, K.; Ikeda, S. Elevation of serum heat-shock protein levels in amyotrophic lateral sclerosis. Neurol. Sci. 2016, 37, 1277–1281. [Google Scholar] [CrossRef]
- Romi, F.; Helgeland, G.; Gilhus, N.E. Heat-shock proteins in clinical neurology. Eur. Neurol. 2011, 66, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Boros, B.D.; Schoch, K.M.; Kreple, C.J.; Miller, T.M. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics 2022, 19, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Guo, M.; Yi, L.; Liu, Y.; Li, Z.; Ma, Y.; Zhang, G.; Liu, Y.; Bu, H.; Song, X.; et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020, 27, 157–169. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Stegbauer, J.; Lee, D.H.; Seubert, S.; Ellrichmann, G.; Manzel, A.; Kvakan, H.; Muller, D.N.; Gaupp, S.; Rump, L.C.; Gold, R.; et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc. Natl. Acad. Sci. USA 2009, 106, 14942–14947. [Google Scholar] [CrossRef]
- Haliga, R.E.; Cojocaru, E.; Sîrbu, O.; Hrițcu, I.; Alexa, R.E.; Haliga, I.B.; Șorodoc, V.; Coman, A.E. Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure. Biomedicines 2025, 13, 1779. [Google Scholar] [CrossRef]
- Felkle, D.; Jarczyński, M.; Kaleta, K.; Zięba, K.; Nazimek, K. The immunomodulatory effects of antihypertensive therapy: A review. Biomed. Pharmacother. 2022, 153, 113287. [Google Scholar] [CrossRef]
- Mantzourani, E.D.; Mavromoustakos, T.M.; Platts, J.A.; Matsoukas, J.M.; Tselios, T.V. Structural requirements for binding of myelin basic protein (MBP) peptides to MHC II: Effects on immune regulation. Curr. Med. Chemi. 2005, 12, 1521–1535. [Google Scholar] [CrossRef]
- Deraos, G.; Chatzantoni, K.; Matsoukas, M.T.; Tselios, T.; Deraos, S.; Katsara, M.; Papathanasopoulos, P.; Vynios, D.; Apostolopoulos, V.; Mouzaki, A.; et al. Citrullination of Linear and Cyclic Altered Peptide Ligands from Myelin Basic Protein (MBP87−99) Epitope Elicits a Th1 Polarized Response by T Cells Isolated from Multiple Sclerosis Patients: Implications in Triggering Disease. J. Med. Chem. 2008, 51, 7834–7842. [Google Scholar] [CrossRef]
- Ridgway, H.; Moore, G.J.; Mavromoustakos, T.; Tsiodras, S.; Ligielli, I.; Kelaidonis, K.; Chasapis, C.T.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; et al. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Comput. Struct. Biotechnol. J. 2022, 20, 2091–2111. [Google Scholar] [CrossRef] [PubMed]
- Imam, F.; Saloner, R.; Vogel, J.W.; Krish, V.; Abdel-Azim, G.; Ali, M.; An, L.; Anastasi, F.; Bennett, D.; Pichet Binette, A.; et al. Global Neurodegeneration Proteomics Consortium (GNPC) (2025). The Global Neurodegeneration Proteomics Consortium: Biomarker and drug target discovery for common neurodegenerative diseases and aging. Nat. Med. 2025, 31, 2556–2566. [Google Scholar] [CrossRef] [PubMed]
Symptoms | Amyotrophic Lateral Sclerosis (ALS) | Multiple Sclerosis (MS) | Key Differences |
---|---|---|---|
Muscle Weakness | Present, primarily in the upper and lower limbs. | Can occur, typically associated with motor function loss. | Common in both, but with different underlying causes. |
Walking Difficulties | Common due to progressive muscle weakness. | Can occur due to coordination and balance loss. | ALS causes progressive muscle weakness, while MS may affect balance. |
Spasticity | Present, with progressive muscle stiffness. | May occur, but is not a predominant symptom. | More pronounced in ALS. |
Fatigue | Present, but not a central symptom. | Common, particularly during relapses. | Fatigue is more prevalent in MS. |
Speech Impairments | Progressive difficulty speaking due to paralysis of speech muscles. | May occur due to loss of coordination, but it is not common. | Common in ALS, rare in MS. |
Vision Problems | Not a common symptom. | Visual issues, such as optic neuritis, are common during relapses. | Clear distinction between the conditions. |
Swallowing Difficulties | Common due to weakness in muscles responsible for swallowing. | May occur in advanced stages of the disease. | More early and severe in ALS. |
Pain | Less frequent but may occur due to spasticity. | Can be intense, especially during relapses affecting peripheral nerves. | Neuropathic pain is more common in MS. |
Disease Stages | Progressive and irreversible. | May have relapses and remissions, with stable phases between attacks. | ALS is progressive without remission phases. |
Drug/Therapy | ALS | MS | Mechanism of Action | Limitations |
---|---|---|---|---|
Riluzole | Approved | Not used for MS | Inhibiting the excitatory glutamate that contributes to neuron injury | Prolongs survival for few months |
Edaravone | Approved | Not used for MS | Reduce and neutralizes oxidative stress in neurons and global cells | There is still a very limited experience of this medication |
Glucocorticoids Corticosteroids | Not used for ALS | Approved | Blocks lymphocyte activation and immune cell entry into CNS | Diabetes; Hypertension, Osteoporosis |
Mitoxantrone | Not used for ALS | Approved | Immunosuppressive; Immunomodulatory | Risk of infection; leukopenia; Gonadotoxicity Bladder cancer |
Cyclophosphamide | Not used for ALS | Approved | Immunosuppressive; Immunomodulatory | Risk of infection; leukopenia; Gonadotoxicity Bladder cancer |
Beta-Interferon | Not used for ALS | Approved | Inhibition of T-cells activation and proliferation apoptosis | Lipoatrophy and risk of site infection; Complication in Thyroid disease |
Glatiramer Acetate (Copaxone) | Not used for ALS | Approved | No precise mechanism of action, but it is assumed to be as Interferon | A few beneficial effects in RRMS and PMS |
Fingolimod Siponimod | Not used for ALS | Approved | Suppresses immune attacks on nerves reducing further damage | Fingolimod cause cardiac and ophthalmological adverse events |
Teriflunomide | Not used for ALS | Approved | Inhibition T cells | Elevated liver enzymes |
Dimethyl fumarate | Not used for ALS | Approved | Inhibition pro-inflammatory Nrf2 1 | Lymphopenia |
Ocrelizumab Naalizumab Alemtuzumab | Not used for ALS | Approved | Monoclonal antibodies | Herpes infection |
HSP Families | New Nomenclature | Members Genes (Humans) | Predominant Location | Functions | Others References |
---|---|---|---|---|---|
Hspsmall | HSPB | 11 | Nucleus/Cytosol/Cytoskeleton/Cillium Golgi Apparatus (GA) | Assist the autophagy process; mitophagy; neuroprotection and prevents protein, inhibition of cell death; reduced oxidative damage. | [1,47,48] |
Hsp60 Hsp10 Chaperonin | HSPD1 HSPE1 | 1 1 | Mitochondria Cytosol Extracellular | Folding of newly formed proteins; refolding denatured proteins in the mitochondria | [49,50,51] |
Hsp70 | HSPA | 13 | Cytosol, Lysossomes, Mitochondria; Endoplasmasmic Reticulum; Microsomes | Selective Autophagy; folding of newly formed proteins; prevention of aggregation; unfolding of misfolded proteins | [52,53] |
Hsp90 | HSPC | 5 | Cytosol; Endoplasmasmic Reticulum; Mitochondria | Prevent protein aggregation; accelerates the final formation of the mature protein | [44,54] |
Hsp110 | HSPH | 4 | Cytosol; Endoplasmasmic Reticulum | Solubilization of protein aggregates; helps the folding with nucleotide exchange factors (NEF) | [50] |
TRic chaperonins | CCT | 9 | Cytosol | An essential role in folding newly synthesized cytosolic proteins and preventing protein aggregation; activation heat shock transcription factors (HSFs) | [50,55] |
Chaperonin-like | MKKS BBS6 BBS10 BBS12 | 3 | Cilia; centrosome/basal body functions. | Basal body functions | [7] |
Hsp40 | DNAJA | 4 | Nucleus/Mitochondria/ ER/Cytosol/Membrane | Recruits’ protein clients for HSPA; stimulate ATP hydrolysis for HSPA; assist the stability of the peptide chaperone complex; helps the folding with NEF; reduce the aggregation of SOD1G93A; Neuron-specific DNAJB2a aids in refolding and solubilizing mutant TDP-43; reduces and prevents aggregation of alpha-synuclein and “tau” protein | [1,44] |
DNAJB | 14 | Nucleus/Cytosol Membrane/ER | |||
DNAJC | 30 | Nucleus/Cytosol/ER/Membrane/ Mitochondria/GA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bittar, J.S.B.; da Costa, C.C.P.; de Lima, N.S.; da Silva Reis, A.A.; da Silva Santos, R. Genetic Variants and Heat Shock Proteins: Unraveling Their Interplay in Neurodegenerative Sclerosis—A Comprehensive Review. Sclerosis 2025, 3, 30. https://doi.org/10.3390/sclerosis3030030
Bittar JSB, da Costa CCP, de Lima NS, da Silva Reis AA, da Silva Santos R. Genetic Variants and Heat Shock Proteins: Unraveling Their Interplay in Neurodegenerative Sclerosis—A Comprehensive Review. Sclerosis. 2025; 3(3):30. https://doi.org/10.3390/sclerosis3030030
Chicago/Turabian StyleBittar, Jacqueline Soares Barros, Caroline Christine Pincela da Costa, Nayane Soares de Lima, Angela Adamski da Silva Reis, and Rodrigo da Silva Santos. 2025. "Genetic Variants and Heat Shock Proteins: Unraveling Their Interplay in Neurodegenerative Sclerosis—A Comprehensive Review" Sclerosis 3, no. 3: 30. https://doi.org/10.3390/sclerosis3030030
APA StyleBittar, J. S. B., da Costa, C. C. P., de Lima, N. S., da Silva Reis, A. A., & da Silva Santos, R. (2025). Genetic Variants and Heat Shock Proteins: Unraveling Their Interplay in Neurodegenerative Sclerosis—A Comprehensive Review. Sclerosis, 3(3), 30. https://doi.org/10.3390/sclerosis3030030