Paediatric Focal Segmental Glomerulosclerosis (FSGS): From Bench to Bedside and Beyond
Abstract
1. Introduction
2. Search Strategy
3. Classification
3.1. Causal Classification
3.1.1. Primary FSGS
3.1.2. Secondary FSGS
3.1.3. Genetic FSGS
3.1.4. FSGS of Undetermined Cause
3.2. Morphological Classification
4. Management
- Complete remission: Reduced proteinuria to <300 mg/day, OR protein–creatinine ratio (PCR) < 300 mg/g, AND serum albumin > 3.5 g/dL, AND stable serum creatinine.
- Partial remission: Reduced proteinuria to 300–3500 mg/day, OR PCR of 300–3500 mg/g, AND a decrease of >50% in proteinuria from baseline.
- Relapse: Proteinuria > 3500 mg/day, OR PCR > 3500 mg/g after achieving complete remission, OR a 50% increase in proteinuria during partial remission.
- Steroid-resistant FSGS: Persistent proteinuria > 3500 mg/day OR PCR > 3500 mg/g with <50% reduction from baseline even after prednisone therapy for at least 16 weeks.
- Steroid-dependent FSGS: Relapse occurring during or within 2 weeks of completing glucocorticoid therapy.
- Calcineurin inhibitor-resistant FSGS: Persistent proteinuria > 3500 mg/day OR PCR > 3500 mg/g with <50% reduction from baseline even after 4–6 months of cyclosporine or tacrolimus therapy at therapeutic levels.
- Calcineurin inhibitor-dependent FSGS: Relapse occurring during or within 2 weeks of completing cyclosporine or tacrolimus therapy for >12 months.
Drug | Mechanism of Action | Dosage | Side Effects |
---|---|---|---|
Prednisone (glucocorticoid) [2] | Broad immunosuppression, reduces podocyte injury | 1 mg/kg/day (max 80 mg) or 2 mg/kg/day on alternate days (max 120 mg), administered for a minimum of 4 weeks. Continue until complete remission is achieved, up to a maximum duration of 16 weeks. | Growth suppression, hyperglycaemia, hypertension, increased risk of infection |
Calcineurin inhibitors | |||
Cyclosporine [2,46] | Inhibits calcineurin, suppresses T-cell activation, stabilises podocytes | 3–5 mg/kg/day in 2 divided doses | Nephrotoxicity, headache, gingival hyperplasia, hyperkalaemia, fever, hypertension, hypertrichosis |
Tacrolimus [2,46,68] | More potent calcineurin inhibition, stabilises podocyte actin cytoskeleton | 0.05–0.1 mg/kg/day in two divided doses | Nephrotoxicity, tremors, hyperglycaemia, seizures, headache, nausea, blurred vision, alopecia |
Steroid-sparing agents | |||
Cyclophosphamide [69,70] | Crosslinks DNA, suppresses T and B cells | 2–3 mg/kg/day for 8–12 weeks | Haemorrhagic cystitis, risk of malignancy, alopecia, nausea and vomiting, diarrhoea, cystitis, oral ulcers, bone marrow suppression, hyponatremia |
Mycophenolate Mofetil [71,72] | Inhibits purine synthesis, reducing B and T cell proliferation | 600 mg/m2/day in 2 divided doses | Constipation, GI bleeding, abdominal pain, nausea and vomiting, weight loss, colitis, headache, eczema |
Rituximab (Anti-CD20 Monoclonal Antibody) [51,52] | Depletes B cells, possibly affecting T-cell interactions and podocyte function | 375 mg/m2 IV weekly for 4 weeks | Neutropenia, infections, hypogammaglobulinemia, myalgia, arthralgia, fatigue, fever, skin rash |
5. Prognoses
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reidy, K.; Kaskel, F.J. Pathophysiology of focal segmental glomerulosclerosis. Pediatr. Nephrol. 2007, 22, 350–354. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Gallon, L.; Leventhal, J.; Skaro, A.; Kanwar, Y.; Alvarado, A. Resolution of Recurrent Focal Segmental Glomerulosclerosis after Retransplantation. N. Engl. J. Med. 2012, 366, 1648–1649. [Google Scholar] [CrossRef] [PubMed]
- Kienzl-Wagner, K.; Rosales, A.; Scheidl, S.; Giner, T.; Bosmuller, C.; Rudnicki, M.; Oberhuber, R.; Margreiter, C.; Soleiman, A.; Ofner, D.; et al. Successful management of recurrent focal segmental glomerulosclerosis. Am. J. Transplant. 2018, 18, 2818–2822. [Google Scholar] [CrossRef] [PubMed]
- Konigshausen, E.; Sellin, L. Circulating Permeability Factors in Primary Focal Segmental Glomerulosclerosis: A Review of Proposed Candidates. Biomed Res. Int. 2016, 2016, 3765608. [Google Scholar] [CrossRef] [PubMed]
- Salfi, G.; Casiraghi, F.; Remuzzi, G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front. Immunol. 2023, 14, 1247606. [Google Scholar] [CrossRef]
- Batal, I.; Watts, A.J.B.; Gibier, J.B.; Hamroun, A.; Top, I.; Provot, F.; Keller, K.; Ye, X.; Fernandez, H.E.; Leal, R.; et al. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. Kidney Int. 2024, 106, 749–752. [Google Scholar] [CrossRef]
- Hengel, F.E.; Huber, T.B.; Tomas, N.M. Potential and pitfalls of measuring circulating anti-nephrin autoantibodies in glomerular diseases. Clin. Kidney J. 2025, 18, sfaf100. [Google Scholar] [CrossRef]
- den Braanker, D.; Maas, R.; Parr, N.; Deegens, J.; Smeets, B.; Wetzels, J.; van der Vlag, J.; Nijenhuis, T. Novel mouse strains to study circulating permeability factor(s) in primary focal segmental glomerulosclerosis. PLoS ONE 2022, 17, e0274959. [Google Scholar] [CrossRef]
- Muller-Deile, J.; Sarau, G.; Kotb, A.M.; Jaremenko, C.; Rolle-Kampczyk, U.E.; Daniel, C.; Kalkhof, S.; Christiansen, S.H.; Schiffer, M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci. Rep. 2021, 11, 4577. [Google Scholar] [CrossRef]
- Jansen, J.; van den Berge, B.T.; van den Broek, M.; Maas, R.J.; Daviran, D.; Willemsen, B.; Roverts, R.; van der Kruit, M.; Kuppe, C.; Reimer, K.C.; et al. Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development 2022, 149, dev200198. [Google Scholar] [CrossRef]
- Hommos, M.S.; De Vriese, A.S.; Alexander, M.P.; Sethi, S.; Vaughan, L.; Zand, L.; Bharucha, K.; Lepori, N.; Rule, A.D.; Fervenza, F.C. The Incidence of Primary vs Secondary Focal Segmental Glomerulosclerosis: A Clinicopathologic Study. Mayo Clin. Proc. 2017, 92, 1772–1781. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Sethi, S.; Nath, K.A.; Glassock, R.J.; Fervenza, F.C. Differentiating Primary, Genetic, and Secondary FSGS in Adults: A Clinicopathologic Approach. J. Am. Soc. Nephrol. 2018, 29, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Fuiano, G.; Comi, N.; Magri, P.; Sepe, V.; Balletta, M.M.; Esposito, C.; Uccello, F.; Dal Canton, A.; Conte, G. Serial morphometric analysis of sclerotic lesions in primary “focal” segmental glomerulosclerosis. J. Am. Soc. Nephrol. 1996, 7, 49–55. [Google Scholar] [CrossRef]
- Williams, A.M.; Jensen, D.M.; Pan, X.; Liu, P.; Liu, J.; Huls, S.; Regner, K.R.; Iczkowski, K.A.; Wang, F.; Li, J.; et al. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. Kidney Int. 2022, 101, 766–778. [Google Scholar] [CrossRef]
- Dettmar, A.K.; Oh, J. Infection-Related Focal Segmental Glomerulosclerosis in Children. Biomed Res. Int. 2016, 2016, 7351964. [Google Scholar] [CrossRef]
- Kriz, W.; Lemley, K.V. Mechanical challenges to the glomerular filtration barrier: Adaptations and pathway to sclerosis. Pediatr. Nephrol. 2017, 32, 405–417. [Google Scholar] [CrossRef]
- Meehan, S.M.; Kim, L.; Chang, A. A spectrum of morphologic lesions of focal segmental glomerulosclerosis by Columbia criteria in human immunodeficiency virus infection. Virchows Arch. 2012, 460, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Daneshpajouhnejad, P.; Kopp, J.B.; Winkler, C.A.; Rosenberg, A.Z. The evolving story of apolipoprotein L1 nephropathy: The end of the beginning. Nat. Rev. Nephrol. 2022, 18, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, P.C.; Jorge, A.E.Z.; Mourão, P.H.V.; Penido, M.G.M.G. Collapsing focal segmental glomerulosclerosis probably triggered by dengue virus infection—Two case reports. Braz. J. Nephrol. 2020, 42, 489–493. [Google Scholar] [CrossRef]
- Araújo, E.M.C.; Campos, M.A.G.; Sodré, A.M.; Holanda, M.I.; Hagemann, R.; Teixeira Júnior, A.A.L.; Salgado Filho, N.; Neves, P.D.M.M.; Silva, G.E.B. Tip Lesion Most Frequent FSGS Variant Related to COVID-19 Vaccine: Two Case Reports and Literature Review. Vaccines 2024, 12, 62. [Google Scholar] [CrossRef]
- Woroniecki, R.P.; Kopp, J.B. Genetics of focal segmental glomerulosclerosis. Pediatr. Nephrol. 2007, 22, 638–644. [Google Scholar] [CrossRef]
- Ranganathan, S. Pathology of Podocytopathies Causing Nephrotic Syndrome in Children. Front. Pediatr. 2016, 4, 32. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D.; Xing, Y.; Scholz, H.; Schedl, A. The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J. Am. Soc. Nephrol. 2004, 15, 3044–3051. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Pollak, M.R. APOL1 Nephropathy: From Genetics to Clinical Applications. Clin. J. Am. Soc. Nephrol. 2021, 16, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Riella, C.; Siemens, T.A.; Wang, M.; Campos, R.P.; Moraes, T.P.; Riella, L.V.; Friedman, D.J.; Riella, M.C.; Pollak, M.R. APOL1-Associated Kidney Disease in Brazil. Kidney Int. Rep. 2019, 4, 923–929. [Google Scholar] [CrossRef]
- Jungraithmayr, T.C.; Hofer, K.; Cochat, P.; Chernin, G.; Cortina, G.; Fargue, S.; Grimm, P.; Knueppel, T.; Kowarsch, A.; Neuhaus, T.; et al. Screening for NPHS2 mutations may help predict FSGS recurrence after transplantation. J. Am. Soc. Nephrol. 2011, 22, 579–585. [Google Scholar] [CrossRef]
- D’Agati, V.D.; Fogo, A.B.; Bruijn, J.A.; Jennette, J.C. Pathologic classification of focal segmental glomerulosclerosis: A working proposal. Am. J. Kidney Dis. 2004, 43, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, S.; Mubarak, M.; Kazi, J.I. Frequency and clinicopathological correlations of histopathological variants of pediatric idiopathic focal segmental glomerulosclerosis. Indian J. Nephrol. 2014, 24, 148–153. [Google Scholar] [CrossRef]
- Paik, K.H.; Lee, B.H.; Cho, H.Y.; Kang, H.G.; Ha, I.S.; Cheong, H.I.; Jin, D.K.; Moon, K.C.; Choi, Y. Primary focal segmental glomerular sclerosis in children: Clinical course and prognosis. Pediatr. Nephrol. 2007, 22, 389–395. [Google Scholar] [CrossRef]
- Abrantes, M.M.; Cardoso, L.S.; Lima, E.M.; Silva, J.M.; Diniz, J.S.; Bambirra, E.A.; Oliveira, E.A. Clinical course of 110 children and adolescents with primary focal segmental glomerulosclerosis. Pediatr. Nephrol. 2006, 21, 482–489. [Google Scholar] [CrossRef]
- D’Agati, V.D.; Alster, J.M.; Jennette, J.C.; Thomas, D.B.; Pullman, J.; Savino, D.A.; Cohen, A.H.; Gipson, D.S.; Gassman, J.J.; Radeva, M.K.; et al. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin. J. Am. Soc. Nephrol. 2013, 8, 399–406. [Google Scholar] [CrossRef]
- Wooden, B.; Beenken, A.; Martinelli, E.; Saida, K.; Knob, A.L.; Ke, J.; Pisani, I.; Jin, G.; Lane, B.; Mitrotti, A.; et al. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J. Am. Soc. Nephrol. 2025, 36, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gao, C.; Xu, C.; Wu, H.; Wang, M.; Wang, R.; Wei, Y.; Li, X.; Ju, T.; Xia, Z.; et al. Predictors of long-term outcomes in pediatric focal segmental glomerulosclerosis. J. Nephrol. 2023, 36, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Deegens, J.K.; Dijkman, H.B.; Borm, G.F.; Steenbergen, E.J.; van den Berg, J.G.; Weening, J.J.; Wetzels, J.F. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 2008, 74, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.J.; Korbet, S.M.; Schwartz, M.M.; Lewis, E.J. Focal segmental glomerulosclerosis in nephrotic adults: Presentation, prognosis, and response to therapy of the histologic variants. J. Am. Soc. Nephrol. 2004, 15, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Zand, L.; Nasr, S.H.; Glassock, R.J.; Fervenza, F.C. Focal and segmental glomerulosclerosis: Clinical and kidney biopsy correlations. Clin. Kidney J. 2014, 7, 531–537. [Google Scholar] [CrossRef]
- Altintas, M.M.; Agarwal, S.; Sudhini, Y.; Zhu, K.; Wei, C.; Reiser, J. Pathogenesis of Focal Segmental Glomerulosclerosis and Related Disorders. Annu. Rev. Pathol. 2025, 20, 329–353. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Appel, G.B.; Fine, P.L.; Fenves, A.Z.; Loon, N.R.; Jagannath, S.; Kuhn, J.A.; Dratch, A.D.; D’Agati, V.D. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J. Am. Soc. Nephrol. 2001, 12, 1164–1172. [Google Scholar] [CrossRef]
- Trautmann, A.; Vivarelli, M.; Samuel, S.; Gipson, D.; Sinha, A.; Schaefer, F.; Hui, N.K.; Boyer, O.; Saleem, M.A.; Feltran, L.; et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1529–1561. [Google Scholar] [CrossRef]
- Banerjee, S.; Bonilla-Felix, M. Management of focal segmental glomerulosclerosis in resource-limited regions. Pediatr. Nephrol. 2024, 39, 3383–3386. [Google Scholar] [CrossRef] [PubMed]
- Catanese, L.; Siwy, J.; Wendt, R.; Amann, K.; Beige, J.; Hendry, B.; Mischak, H.; Mullen, W.; Paterson, I.; Schiffer, M.; et al. Differentiating primary and secondary FSGS using non-invasive urine biomarkers. Clin. Kidney J. 2024, 17, sfad296. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Jongs, N.; Stefansson, B.V.; Chertow, G.M.; Greene, T.; Hou, F.F.; Langkilde, A.M.; McMurray, J.J.V.; Rossing, P.; Nowicki, M.; et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: A prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol. Dial. Transplant. 2022, 37, 1647–1656. [Google Scholar] [CrossRef]
- Rajasekeran, H.; Reich, H.N.; Hladunewich, M.A.; Cattran, D.; Lovshin, J.A.; Lytvyn, Y.; Bjornstad, P.; Lai, V.; Tse, J.; Cham, L.; et al. Dapagliflozin in focal segmental glomerulosclerosis: A combined human-rodent pilot study. Am. J. Physiol. Renal Physiol. 2018, 314, F412–F422. [Google Scholar] [CrossRef]
- Shah, S.S.H.; Hafeez, F. Comparison of Efficacy of Tacrolimus Versus Cyclosporine in Childhood Steroid-Resistant Nephrotic Syndrome. J. Coll. Physicians Surg. Pak. 2016, 26, 589–593. [Google Scholar]
- Safdar, R.S.; Mehar, M.F.; Khan, A.A.; Buzdar, N. Focal Segmental Glomerulosclerosis in Paediatric Population of South Punjab Pakistan: A Tertiary Care Hospital Experience. Pak. J. Med. Sci. 2021, 37, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Duncan, N.; Dhaygude, A.; Owen, J.; Cairns, T.D.; Griffith, M.; McLean, A.G.; Palmer, A.; Taube, D. Treatment of focal and segmental glomerulosclerosis in adults with tacrolimus monotherapy. Nephrol. Dial. Transplant. 2004, 19, 3062–3067. [Google Scholar] [CrossRef]
- Chavez-Mendoza, C.A.; Nino-Cruz, J.A.; Correa-Rotter, R.; Uribe-Uribe, N.O.; Mejia-Vilet, J.M. Calcineurin Inhibitors With Reduced-Dose Steroids as First-Line Therapy for Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2019, 4, 40–47. [Google Scholar] [CrossRef]
- Laurin, L.P.; Gasim, A.M.; Poulton, C.J.; Hogan, S.L.; Jennette, J.C.; Falk, R.J.; Foster, B.J.; Nachman, P.H. Treatment with Glucocorticoids or Calcineurin Inhibitors in Primary FSGS. Clin. J. Am. Soc. Nephrol. 2016, 11, 386–394. [Google Scholar] [CrossRef]
- Bagga, A.; Sinha, A.; Moudgil, A. Rituximab in Patients with the Steroid-Resistant Nephrotic Syndrome. N. Engl. J. Med. 2007, 356, 2751–2752. [Google Scholar] [CrossRef]
- Benz, K.; Dötsch, J.; Rascher, W.; Stachel, D. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr. Nephrol. 2004, 19, 794–797. [Google Scholar] [CrossRef]
- Ravani, P.; Rossi, R.; Bonanni, A.; Quinn, R.R.; Sica, F.; Bodria, M.; Pasini, A.; Montini, G.; Edefonti, A.; Belingheri, M.; et al. Rituximab in Children with Steroid-Dependent Nephrotic Syndrome: A Multicenter, Open-Label, Noninferiority, Randomized Controlled Trial. J. Am. Soc. Nephrol. 2015, 26, 2259–2266. [Google Scholar] [CrossRef]
- Tian, D.; Jacobo, S.M.; Billing, D.; Rozkalne, A.; Gage, S.D.; Anagnostou, T.; Pavenstadt, H.; Hsu, H.H.; Schlondorff, J.; Ramos, A.; et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci. Signal. 2010, 3, ra77. [Google Scholar] [CrossRef]
- Wieder, N.; Greka, A. Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: Towards a future of targeted therapies. Pediatr. Nephrol. 2015, 31, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Castonguay, P.; Sidhom, E.H.; Clark, A.R.; Dvela-Levitt, M.; Kim, S.; Sieber, J.; Wieder, N.; Jung, J.Y.; Andreeva, S.; et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 2017, 358, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.; Reilly, J.F.; Cornwall, C.; Gaich, G.A.; Gipson, D.S.; Heerspink, H.J.L.; Johnson, L.; Trachtman, H.; Tuttle, K.R.; Farag, Y.M.K.; et al. Safety and Efficacy of GFB-887, a TRPC5 Channel Inhibitor, in Patients with Focal Segmental Glomerulosclerosis, Treatment-Resistant Minimal Change Disease, or Diabetic Nephropathy: TRACTION-2 Trial Design. Kidney Int. Rep. 2021, 6, 2575–2584. [Google Scholar] [CrossRef]
- Trachtman, H.; Kretzler, M.; Desmond, H.E.; Choi, W.; Manuel, R.C.; Soleymanlou, N. TRPC6 Inhibitor BI 764198 in Focal Segmental Glomerulosclerosis: Phase 2 Study Design. Kidney Int. Rep. 2023, 8, 2822–2825. [Google Scholar] [CrossRef]
- Komers, R.; Diva, U.; Inrig, J.K.; Loewen, A.; Trachtman, H.; Rote, W.E. Study Design of the Phase 3 Sparsentan Versus Irbesartan (DUPLEX) Study in Patients with Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2020, 5, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Rheault, M.N.; Alpers, C.E.; Barratt, J.; Bieler, S.; Canetta, P.; Chae, D.W.; Coppock, G.; Diva, U.; Gesualdo, L.; Heerspink, H.J.L.; et al. Sparsentan versus Irbesartan in Focal Segmental Glomerulosclerosis. N. Engl. J. Med. 2023, 389, 2436–2445. [Google Scholar] [CrossRef]
- Kim, S.G.; Akinfolarin, A.A.; Inker, L.A.; Lafayette, R.; Pedagogos, E.; Rheault, M.N.; Tumlin, J.; DeVries, T.; Sheth, K.; Camargo, M.; et al. WCN23-1117 Atrasentan in patients with proteinuric glomerular diseases—The AFFINITY Study. Kidney Int. Rep. 2023, 8, 1902. [Google Scholar] [CrossRef]
- Vincenti, F.; Fervenza, F.C.; Campbell, K.N.; Diaz, M.; Gesualdo, L.; Nelson, P.; Praga, M.; Radhakrishnan, J.; Sellin, L.; Singh, A.; et al. A Phase 2, Double-Blind, Placebo-Controlled, Randomized Study of Fresolimumab in Patients with Steroid-Resistant Primary Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2017, 2, 800–810. [Google Scholar] [CrossRef]
- Barsotti, G.C.; Luciano, R.; Kumar, A.; Meliambro, K.; Kakade, V.; Tokita, J.; Naik, A.; Fu, J.; Peck, E.; Pell, J.; et al. Rationale and Design of a Phase 2, Double-Blind, Placebo-Controlled, Randomized Trial Evaluating AMP Kinase-Activation by Metformin in Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2024, 9, 1354–1368. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G. Advances in Focal Segmental Glomerulosclerosis Treatment from the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des. Dev. Ther. 2025, 19, 857–875. [Google Scholar] [CrossRef]
- de Cos, M.; Meliambro, K.; Campbell, K.N. Novel Treatment Paradigms: Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2023, 8, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, O.; Zimmerman, B.; Manos, G.; Fortier, A.; Chirieac, M.C.; Dakin, L.A.; Friedman, D.J.; Bramham, K.; Campbell, K.; Knebelmann, B.; et al. Inaxaplin for Proteinuric Kidney Disease in Persons with Two APOL1 Variants. N. Engl. J. Med. 2023, 388, 969–979. [Google Scholar] [CrossRef]
- Aghajan, M.; Booten, S.L.; Althage, M.; Hart, C.E.; Ericsson, A.; Maxvall, I.; Ochaba, J.; Menschik-Lundin, A.; Hartleib, J.; Kuntz, S.; et al. Antisense oligonucleotide treatment ameliorates IFN-gamma-induced proteinuria in APOL1-transgenic mice. JCI Insight 2019, 4, e126124. [Google Scholar] [CrossRef] [PubMed]
- Meera, M.; Manikandan, S.; Parameswaran, S. Adverse Effects of Tacrolimus and Its Associated Risk Factors in Renal Transplant Recipients. Exp. Clin. Transplant. 2023, 21, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Fraiser, L.H.; Kanekal, S.; Kehrer, J.P. Cyclophosphamide Toxicity. Drugs 1991, 42, 781–795. [Google Scholar] [CrossRef]
- DeChiara, J.R.; Birch, E.M.; Harper, H. Low-Dose Cyclophosphamide Associated with Hyponatremia and Hepatotoxicity. Cureus 2023, 15, e45375. [Google Scholar] [CrossRef]
- Krawczyk, A.; Kravcenia, B.; Maslanka, T. Mycophenolate mofetil: An update on its mechanism of action and effect on lymphoid tissue. Front. Immunol. 2024, 15, 1463429. [Google Scholar] [CrossRef] [PubMed]
- Jehangir, A.; Shaikh, B.; Hunt, J.; Spiegel, A. Severe Enteropathy from Mycophenolate Mofetil. ACG Case Rep. J. 2016, 3, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Troost, J.P.; Trachtman, H.; Spino, C.; Kaskel, F.J.; Friedman, A.; Moxey-Mims, M.M.; Fine, R.N.; Gassman, J.J.; Kopp, J.B.; Walsh, L.; et al. Proteinuria Reduction and Kidney Survival in Focal Segmental Glomerulosclerosis. Am. J. Kidney Dis. 2021, 77, 216–225. [Google Scholar] [CrossRef]
- Mariani, L.H.; Trachtman, H.; Thompson, A.; Gillespie, B.S.; Denburg, M.; Diva, U.; Geetha, D.; Greasley, P.J.; Hladunewich, M.A.; Huizinga, R.B.; et al. Proteinuria as an End Point in Clinical Trials of Focal Segmental Glomerulosclerosis. Am. J. Kidney Dis. 2024, 85, 610–617. [Google Scholar] [CrossRef]
- Rydel, J.J.; Korbet, S.M.; Borok, R.Z.; Schwartz, M.M. Focal segmental glomerular sclerosis in adults: Presentation, course, and response to treatment. Am. J. Kidney Dis. 1995, 25, 534–542. [Google Scholar] [CrossRef]
- Priyanka, K.; Deepthi, B.; Krishnasamy, S.; Ganesh, R.N.; Sravani, M.; Krishnamurthy, S. Kidney outcomes in children with primary focal segmental glomerulosclerosis from a low- and middle- income country. Pediatr. Nephrol. 2024, 39, 3485–3495. [Google Scholar] [CrossRef]
- Zerkowitz, E.; Gellermann, J.; Beckus, J.; Holle, J.; Kempf, C.; Bufler, P.; Muller, D.; Thumfart, J.; Klambt, V. Outcomes and prognostic factors in childhood-onset steroid-resistant nephrotic syndrome: A retrospective single-center study. Pediatr. Nephrol. 2025, 40, 2239–2252. [Google Scholar] [CrossRef]
- Sethna, C.B.; Ng, D.K.; Jiang, S.; Saland, J.; Warady, B.A.; Furth, S.; Meyers, K.E. Cardiovascular disease risk among children with focal segmental glomerulosclerosis: A report from the chronic kidney disease in children study. Pediatr. Nephrol. 2019, 34, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Woroniecki, R.P.; Ng, D.K.; Limou, S.; Winkler, C.A.; Reidy, K.J.; Mitsnefes, M.; Sampson, M.G.; Wong, C.S.; Warady, B.A.; Furth, S.L.; et al. Renal and Cardiovascular Morbidities Associated with APOL1 Status Among African-American and Non-African-American Children with Focal Segmental Glomerulosclerosis. Front. Pediatr. 2016, 4, 122. [Google Scholar] [CrossRef] [PubMed]
Variant | Histologic Features | Clinical Association | Prognosis |
---|---|---|---|
Tip | Involvement of the outer 25% of the glomerular tuft next to the tubular pole, in the absence of collapsing or perihilar lesions. |
| Best Poor |
Cellular | ≥1 glomerulus with segmental endocapillary hypercellularity involving >25% of the glomerular tuft, leading to occlusion of the capillary lumen; requires exclusion of collapsing and tip variants. |
| |
Perihilar | ≥50% of the sclerotic glomeruli have sclerosis and/or hyalinosis in the perihilar area in at least 1 glomerulus. |
| |
Collapsing | Glomerular capillary collapse, podocyte hypertrophy and hyperplasia in at least 1 glomerulus. The findings of other variants in other glomeruli do not affect the diagnosis. |
| |
Not otherwise specified (NOS) | Segmental increase in matrix obliterating the capillary lumen, but does not satisfy the inclusion within any of the 4 other variants; the most common variant. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limavady, A.; Hermawan, K.; Palupi-Baroto, R. Paediatric Focal Segmental Glomerulosclerosis (FSGS): From Bench to Bedside and Beyond. Sclerosis 2025, 3, 29. https://doi.org/10.3390/sclerosis3030029
Limavady A, Hermawan K, Palupi-Baroto R. Paediatric Focal Segmental Glomerulosclerosis (FSGS): From Bench to Bedside and Beyond. Sclerosis. 2025; 3(3):29. https://doi.org/10.3390/sclerosis3030029
Chicago/Turabian StyleLimavady, Andrew, Kristia Hermawan, and Retno Palupi-Baroto. 2025. "Paediatric Focal Segmental Glomerulosclerosis (FSGS): From Bench to Bedside and Beyond" Sclerosis 3, no. 3: 29. https://doi.org/10.3390/sclerosis3030029
APA StyleLimavady, A., Hermawan, K., & Palupi-Baroto, R. (2025). Paediatric Focal Segmental Glomerulosclerosis (FSGS): From Bench to Bedside and Beyond. Sclerosis, 3(3), 29. https://doi.org/10.3390/sclerosis3030029