Focal and Segmental Glomerulosclerosis: A Comprehensive State-of-the-Art Review
Abstract
1. Introduction
2. Epidemiology
3. Histopathology
4. Pathophysiology and Classification
- A.
- Primary FSGS
- B.
- Genetic FSGS
- C.
- Secondary FSGS
5. Treatment
6. Prognosis
7. Post-Transplant FSGS
8. Emerging Therapies and Future Directions
9. Conclusions
10. Search Strategy
Author Contributions
Funding
Conflicts of Interest
References
- Fahr, T. Handbuch der Speziellen Pathologischen Anatomie und Histologie; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1925; Volume VI/1. [Google Scholar]
- Rich, A.R. A hitherto undescribed vulnerability of the juxta-medullary glomeruli in lipoid nephrosis. Bull. Johns Hopkins Hosp. 1957, 100, 173–186. [Google Scholar] [PubMed]
- Churg, J.; Habib, R.; White, R.H. Pathology of the nephrotic syndrome in children: A report for the International Study of Kidney Disease in Children. Lancet 1970, 760, 1299–1302. [Google Scholar] [CrossRef]
- D’Agati, V.D.; Fogo, A.B.; Bruijn, J.A.; Jennette, J.C. Pathologic classification of focal segmental glomerulosclerosis: A working proposal. Am. J. Kidney Dis. 2004, 43, 368–382. [Google Scholar] [CrossRef]
- Bonilla, M.; Efe, O.; Selvaskandan, H.; Lerma, E.V.; Wiegley, N. A Review of Focal Segmental Glomerulosclerosis Classification with a Focus on Genetic Associations. Kidney Med. 2024, 6, 100826. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.Z.; Kopp, J.B. Focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef] [PubMed]
- Munis, M.A.; Chen, Q.; Hill, T.M.; Zhuo, M.; Schachter, A.D.; Bhandari, S.K.; Hever, A.; Harrison, T.N.; Fernandes, A.W.; Sim, J.J. Incidence and Proportion of Primary Focal Segmental Glomerulosclerosis (FSGS) among a Racially and Ethnically Diverse Adult Patient Population between 2010 and 2021. Clin. J. Am. Soc. Nephrol. 2024, 20, 229–238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldschmidt, D.; Bensink, M.E.; Zhou, Z.-Y.; Shi, S.; Lin, Y.; Shi, L. Epidemiology and burden of focal segmental glomerulosclerosis among United States Veterans: An analysis of Veteran’s Affairs data. PLoS ONE 2024, 19, e0315302. [Google Scholar] [CrossRef]
- Kitiyakara, C.; Eggers, P.; Kopp, J.B. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am. J. Kidney Dis. 2004, 44, 815. [Google Scholar] [CrossRef]
- Rivera, F.; López-Gómez, J.M.; Pérez-García, R.; Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 2004, 66, 898. [Google Scholar] [CrossRef]
- Jin, B.; Zeng, C.; Ge, Y.; Le, W.; Xie, H.; Chen, H.; Liang, S.; Xu, F.; Jiang, S.; Liu, Z. The spectrum of biopsy-proven kidney diseases in elderly Chinese patients. Nephrol. Dial. Transplant. 2014, 29, 2251. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.B.; D’Agati, V.D. Morphologic variants of focal segmental glomerulosclerosis and their significance. Adv. Chronic Kidney Dis. 2014, 21, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Shabaka, A.; Tato Ribera, A.; Fernández-Juárez, G. Focal Segmental Glomerulosclerosis: State-of-the-Art and Clinical Perspective. Nephron 2020, 144, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Konigshausen, E.; Sellin, L. Circulating permeability factors in primary focal segmental glomerulosclerosis: A review of proposed candidates. Biomed. Res. Int. 2016, 2016, 3765608. [Google Scholar] [CrossRef]
- Savin, V.J.; McCarthy, E.T.; Sharma, R.; Charba, D.; Sharma, M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl. Res. 2008, 151, 288–292. [Google Scholar] [CrossRef]
- Hoyer, J.R.; Rau, L.; Vernier, R.L.; Simmons, R.D.L.; Najarian, J.S.; Michael, A.F. Recurrence of idiopathic nephrotic syndrome after renal transplantation. J. Am. Soc. Nephrol. 2001, 12, 1994–2002. [Google Scholar] [CrossRef]
- Artero, M.L.; Sharma, R.; Savin, V.J.; Vincenti, F. Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomerulosclerosis. Am. J. Kidney Dis. 1994, 23, 574–581. [Google Scholar] [CrossRef]
- Kemper, M.J.; Wolf, G.; Muller-Wiefel, D.E. Transmission of glomerular permeability factor from a mother to her child. N. Engl. J. Med. 2001, 344, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, R.; McCarthy, E.T.; Savin, V.J. “The FSGS factor”: Enrichment and in vivo effect of activity from focal segmental glomerulosclerosis plasma. J. Am. Soc. Nephrol. 1999, 10, 552–561. [Google Scholar] [CrossRef]
- Glassock, R.J. Circulating permeability factors in the nephrotic syndrome: A fresh look at an old problem. J. Am. Soc. Nephrol. 2003, 14, 541–543. [Google Scholar] [CrossRef]
- McCarthy, E.T.; Sharma, M.; Savin, V.J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2115–2121. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; El Hindi, S.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.-K.; Saleem, M.; et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Savin, V.J.; Sharma, M.; Zhou, J.; Gennochi, D.; Fields, T.; Sharma, R.; McCarthy, E.T.; Srivastava, T.; Domen, J.; Tormo, A.; et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J. Immunol. Res. 2015, 11, 714964. [Google Scholar] [CrossRef]
- Delville, M.; Sigdel, T.K.; Wei, C.; Li, J.; Hsieh, S.-C.; Fornoni, A.; Burke, G.W.; Bruneval, P.; Naesens, M.; Jackson, A.; et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl. Med. 2014, 6, 256ra136. [Google Scholar] [CrossRef]
- Veissi, S.T.; Smeets, B.; van Wijk, J.A.E.; Classens, R.; van der Velden, T.J.A.M.; Jeronimus-Klaasen, A.; Veltkamp, F.; Mak-Nienhuis, E.M.; Morello, W.; Montini, G.; et al. Circulating Permeability Factors in Focal Segmental Glomerulosclerosis: In Vitro Detection. Kidney Int. Rep. 2022, 7, 2691–2703. [Google Scholar] [CrossRef]
- Estreicher, A.; Muhlhauser, J.; Carpentier, J.-L.; Orci, L.; Vassalli, J.-D. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J. Cell Biol. 1990, 111, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Möller, C.C.; Altintas, M.M.; Li, J.; Schwarz, K.; Zacchigna, S.; Xie, L.; Henger, A.; Schmid, H.; Rastaldi, M.P.; et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 2008, 14, 55–63. [Google Scholar] [CrossRef]
- Blasi, F.; Carmeliet, P. uPAR: A versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002, 3, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Backes, Y.; van der Sluijs, K.F.; Mackie, D.P.; Tacke, F.; Koch, A.; Tenhunen, J.J.; Schultz, M.J. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: A systematic review. Intensive Care Med. 2012, 38, 1418–1428. [Google Scholar] [CrossRef]
- Meijers, B.; Maas, R.J.H.; Sprangers, B.; Claes, K.; Poesen, R.; Bammens, B.; Naesens, M.; Deegens, J.K.J.; Dietrich, R.; Storr, M.; et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014, 85, 636–640. [Google Scholar] [CrossRef]
- Hayek, S.S.; Sever, S.; Ko, Y.A.; Trachtman, H.; Awad, M.; Wadhwani, S.; Altintas, M.M.; Wei, C.; Hotton, A.L.; French, A.L.; et al. Soluble urokinase receptor and chronic kidney disease. N. Engl. J. Med. 2015, 373, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Kestilä, M.; Lenkkeri, U.; Männikkö, M.; Lamerdin, J.; McCready, P.; Putaala, H.; Ruotsalainen, V.; Morita, T.; Nissinen, M.; Herva, R.; et al. Positionally Cloned Gene for a Novel Glomerular Protein—Nephrin—Is Mutated in Congenital Nephrotic Syndrome. Mol. Cell 1998, 1, 575–582. [Google Scholar] [CrossRef]
- Shirai, Y.; Miura, K.; Ishizuka, K.; Ando, T.; Kanda, S.; Hashimoto, J.; Hamasaki, Y.; Hotta, K.; Ito, N.; Honda, K.; et al. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. Kidney Int. 2024, 105, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Hengel, F.E.; Dehde, S.; Lassé, M.; Zahner, G.; Seifert, L.; Schnarre, A.; Kretz, O.; Demir, F.; Pinnschmidt, H.O.; Grahammer, F.; et al. Autoantibodies Targeting Nephrin in Podocytopathies. N. Engl. J. Med. 2024, 391, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yang, B.; Chen, Q.; Xu, Y.; Li, H. Potential biomarkers of recurrent FSGS: A review. BMC Nephrol. 2024, 25, 258. [Google Scholar] [CrossRef]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, D.J.; Pollak, M.R. APOL1 Nephropathy: From Genetics to Clinical Applications. Clin. J. Am. Soc. Nephrol. 2021, 16, 294–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, D.J.; Pollak, M.R. Genetics of kidney failure and the evolving story of APOL1. J. Clin. Investig. 2011, 121, 3367–3374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kopp, J.B.; Nelson, G.W.; Sampath, K.; Johnson, R.C.; Genovese, G.; An, P.; Friedman, D.; Briggs, W.; Dart, R.; Korbet, S.; et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137. [Google Scholar] [CrossRef]
- Lepori, N.; Zand, L.; Sethi, S.; Fernandez-Juarez, G.; Fervenza, F.C. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin. Kidney J. 2018, 11, 179. [Google Scholar] [CrossRef]
- Kim, J.S.; Han, B.G.; Choi, S.O.; Cha, S.K. Secondary Focal Segmental Glomerulosclerosis: From Podocyte Injury to Glomerulosclerosis. Biomed. Res. Int. 2016, 2016, 1630365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kriz, W.; Hähnel, B.; Hosser, H.; Rösener, S.; Waldherr, R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front. Endocrinol. 2014, 5, 207. [Google Scholar] [CrossRef]
- Praga, M.; Borstein, B.; Andres, A.; Arenas, J.; Oliet, A.; Montoyo, C.; Ruilope, L.M.; Rodicio, J.L. Nephrotic proteinuria without hypoalbuminaemia: Clinical characteristics and response to angiotensive-converting enzyme inhibition. Am. J. Kidney Dis. 1991, 17, 330. [Google Scholar] [CrossRef]
- Praga, M.; Morales, E.; Herrero, J.C.; Campos, A.P.; Domínguez-Gil, B.; Alegre, R. Absence of hypoalbuminaemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am. J. Kidney Dis. 1999, 33, 52. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Kopp, J.B. Viruses and collapsing glomerulopathy: A brief critical review. Clin. Kidney J. 2013, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moranne, O.; Watier, L.; Rossert, J.; Stengel, B.; Group TG-PS. Primary glomerulonephritis: An update on renal survival and determinants of progression. QJM Int. J. Med. 2008, 101, 215–224. [Google Scholar] [CrossRef]
- Bensink, M.E.; Goldschmidt, D.; Zhou, Z.-Y.; Wang, K.; Lieblich, R.; Bunke, C.M. Kidney Failure Attributed to Focal Segmental Glomerulosclerosis: A USRDS Retrospective Cohort Study of Epidemiology, Treatment Modalities, and Economic Burden. Kidney Med. 2024, 6, 100760. [Google Scholar] [CrossRef]
- Stirling, C.M.; Mathieson, P.; Boulton-Jones, J.M.; Feehally, J.; Jayne, D.; Murray, H.M.; Adu, D. Treatment and outcome of adult patients with primary focal segmental glomerulosclerosis in five UK renal units. QJM Int. J. Med. 2005, 98, 443–449. [Google Scholar] [CrossRef]
- Hao, X.; Yu, S.; Weng, Q.; Fang, Z.; Zheng, Q.; Zhao, Y.; Liu, J. Clinical Characteristics and Prognosis of Genetic Focal Segment Glomerulosclerosis. Am. J. Kidney Dis. 2024, 84, 660–662. [Google Scholar] [CrossRef]
- Raina, R.; Jothi, S.; Haffner, D.; Somers, M.; Filler, G.; Vasistha, P.; Chakraborty, R.; Shapiro, R.; Randhawa, P.S.; Parekh, R.; et al. Post-transplant recurrence of focal segmental glomerular sclerosis: Consensus statements. Kidney Int. 2024, 105, 450–463. [Google Scholar] [CrossRef]
- Uffing, A.; Pérez-Sáez, M.J.; Mazzali, M.; Manfro, R.C.; Bauer, A.C.; de Sottomaior Drumond, F.; O’Shaughnessy, M.M.; Cheng, X.S.; Chin, K.-K.; Ventura, C.G.; et al. Recurrence of FSGS after Kidney Transplantation in Adults. Clin. J. Am. Soc. Nephrol. 2020, 15, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Trnka, P.; McTaggart, S.J. Long-Term Outcome of Kidney Transplantation in Recipients with Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2016, 11, 2041–2046. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Colturi, C.; Montagnino, G.; Ponticelli, C. The recurrence of focal segmental glomerulosclerosis in kidney transplant patients treated with cyclosporine. Transplantation 1990, 50, 594–596. [Google Scholar] [CrossRef]
- Senggutuvan, P.; Cameron, J.S.; Hartley, R.B.; Rigden, S.; Chantler, C.; Haycock, G.; Williams, D.G.; Ogg, C.; Koffman, G. Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: Analysis of incidence and risk factors in 59 allografts. Pediatr. Nephrol. 1990, 4, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Dall’Amico, R.; Ghiggeri, G.; Carraro, M.; Artero, M.; Ghio, L.; Zamorani, E.; Zennaro, C.; Basile, G. Prediction and treatment of recurrent focal segmental glomerulosclerosis after renal transplantation in children. Am. J. Kidney Dis. 1999, 34, 1048–1055. [Google Scholar] [CrossRef]
- Hariharan, S.; Peddi, V.R.; Savin, V.J.; Johnson, C.P.; First, M.R.; Roza, A.M.; Adams, M.B. Recurrent and de novo renal diseases after renal transplantation: A report from the renal allograft disease registry. Am. J. Kidney Dis. 1998, 31, 928–931. [Google Scholar] [CrossRef]
- Holmberg, C.; Jalanko, H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr. Nephrol. 2014, 29, 2309–2317. [Google Scholar] [CrossRef]
- Becker-Cohen, R.; Bruschi, M.; Rinat, C.; Feinstein, S.; Zennaro, C.; Ghiggeri, G.M.; Frishberg, Y. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am. J. Transplant. 2007, 7, 256–260. [Google Scholar] [CrossRef]
- Shishido, S.; Satou, H.; Muramatsu, M.; Hamasaki, Y.; Ishikura, K.; Hataya, H.; Honda, M.; Asanuma, H.; Aikawa, A. Combination of pulse methylprednisolone infusions with cyclosporine-based immunosuppression is safe and effective to treat recurrent focal segmental glomerulosclerosis after pediatric kidney transplantation. Clin. Transplant. 2013, 27, E143–E150. [Google Scholar] [CrossRef]
- Cheong, H.I.; Han, H.W.; Park, H.W.; Ha, I.S.; Han, K.S.; Lee, H.S.; Kim, S.J.; Choi, Y. Early recurrent nephrotic syndrome after renal transplantation in children with focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2000, 15, 78–81. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Ghahramani, N. Combined rituximab and plasmapheresis or plasma exchange for focal segmental glomerulosclerosis in adult kidney transplant recipients: A meta-analysis. Int. Urol. Nephrol. 2020, 52, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Boonpheng, B.; Hansrivijit, P.; Thongprayoon, C.; Mao, S.A.; Vaitla, P.K.; Bathini, T.; Choudhury, A.; Kaewput, W.; Mao, M.A.; Cheungpasitporn, W. Rituximab or plasmapheresis for prevention of recurrent focal segmental glomerulosclerosis after kidney transplantation: A systematic review and meta-analysis. World J. Transplant. 2021, 11, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Uro-Coste, C.; Lambert, C.; Audard, V.; Couzi, L.; Caillard, S.; Büchler, M.; Del Bello, A.; Malvezzi, P.; Pernin, V.; Colosio, C.; et al. Prophylactic treatment of FSGS recurrence in patients who relapsed on a previous kidney graft. Nephrol. Dial. Transplant. 2024, 40, 475–483. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des. Devel Ther. 2025, 19, 857–875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Cos, M.; Meliambro, K.; Campbell, K.N. Novel Treatment Paradigms: Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2022, 8, 30–35, Erratum in Kidney Int. Rep. 2023, 8, 949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trachtman, H.; Nelson, P.; Adler, S.; Campbell, K.N.; Chaudhuri, A.; Derebail, V.K.; Gambaro, G.; Gesualdo, L.; Gipson, D.S.; Hogan, J.; et al. DUET: A phase 2 study evaluating the efficacy and safety of Sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 2018, 29, 2745–2754. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Parving, H.H.; Andress, D.L.; Correa-Rotter, R.; Hou, F.-F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; Melnick, J.Z.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef]
- Walsh, L.; Reilly, J.F.; Cornwall, C.; Gaich, G.A.; Gipson, D.S.; Heerspink, H.J.; Johnson, L.; Trachtman, H.; Tuttle, K.R.; Farag, Y.M.; et al. Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int. Rep. 2021, 6, 2575–2584. [Google Scholar] [CrossRef]
- Winn, M.P.; Conlon, P.J.; Lynn, K.L.; Farrington, M.K.; Creazzo, T.; Hawkins, A.F.; Daskalakis, N.; Kwan, S.Y.; Ebersviller, S.; Burchette, J.L.; et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005, 308, 1801–1804. [Google Scholar] [CrossRef]
- Vasquez-Rios, G.; De Cos, M.; Campbell, K.N. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int. Rep. 2023, 8, 2226–2234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Atmaca, M.; Gulhan, B.; Korkmaz, E.; Inozu, M.; Soylemezoglu, O.; Candan, C.; Bayazıt, A.K.; Elmacı, A.M.; Parmaksiz, G.; Duzova, A.; et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr. Nephrol. 2017, 32, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Drovandi, S.; Lipska-Ziętkiewicz, B.S.; Ozaltin, F.; Emma, F.; Gulhan, B.; Boyer, O. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int. 2022, 102, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Minocha, E.; Koss, K.M.; Naved, B.A.; Safar-Boueri, L.; Wertheim, J.A.; Gallon, L. A Kidney organoid-based readbout to assess disease activity in primary and recurrent focal segmental glomerulosclerosis. Kidney Int. 2025, 107, 888–902. [Google Scholar] [CrossRef]
- Casiraghi, F.; Remuzzi, G. Kidney organoids: A 3-dimensional tool to unmask permeability factors in primary and recurrent FSGS. Kidney Int. 2025, 107, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Catanese, L.; Siwy, J.; Wendt, R.; Amann, K.; Beige, J.; Hendry, B.; Mischak, H.; Mullen, W.; Paterson, I.; Schiffer, M.; et al. Differentiating primary and secondary FSGS using non-invasive urine biomarkers. Clin. Kidney J. 2024, 17, sfad296. [Google Scholar] [CrossRef]
- Pawuś, D.; Porażko, T.; Paszkiel, S. Automation and Decision Support in Nephrology: An Expert System Based on AI and ML for the Assessment, Treatment, and Management of Focal Segmental Glomerulosclerosis. Appl. Sci. 2025, 15, 1044. [Google Scholar] [CrossRef]
Variant | Histological Features | Clinical Features |
---|---|---|
Not otherwise specified | Criteria for other FSGS variants not met. | Varies from sub-nephrotic to nephrotic range proteinuria. Most common variant. |
Perihilar | Lesions at the glomerular vascular pole. Hyalinosis and sclerosis in a perihilar distribution in the majority of glomeruli with segmental lesions. | Common in secondary/adaptive FSGS, usually presenting with sub-nephrotic proteinuria. |
Cellular | Segmental lesions expanded with endocapillary hypercellularity (can include foam cells and leucocytes), with a degree of glomerular epithelial hyperplasia. | Least common variant. Usually associated with primary FSGS presenting with nephrotic syndrome. |
Tip | Segmental lesion at the tubular pole. Either cellular or sclerosing lesion with adhesion or confluence of podocytes with tubular epithelial cells. | Best prognosis. Often seen in primary FSGS that is steroid responsive with the lowest risk of progression to ESKD. |
Collapsing | Segmental or global collapse with overlying podocyte hypertrophy and hyperplasia | Worst prognosis. Classically seen in HIV but also other secondary causes: viral and drug-induced. |
Inheritance | Gene (Protein) | Clinical Presentation |
---|---|---|
Autosomal Recessive | ||
NPHS1 (Nephrin) | Congenital nephrotic syndrome | |
NPHS2 (Podocin) | Congenital/Childhood nephrotic syndrome | |
PLCε1 (Phospholipase Cε1) | Adult-onset nephrotic syndrome. | |
CD2AP (CD2 associated protein) | FSGS in childhood | |
MYO1E (Non muscle class I myosin 1E) | FSGS in childhood | |
Lamb2 (Laminin-beta2) | Pierson Syndrome | |
ITGB4 (Integrin-beta 4) | Epidermolysis bullosa, atresia of pylorus and early onset FSGS. | |
SCARB2 (Scavenger receptor class B member2) | Action myoclonus-renal failure syndrome | |
Col4A3 (Alpha 3 type 4 Collagen) | Alport syndrome | |
CUBN (Cubilin) | Megaloblastic anaemia and childhood nephrotic syndrome | |
COQ2, COQ6, PDSS2 and ADCK4 (Mitochondrial disorder-Coenzyme Q 10 Deficiency) | FSGS with optical and sensorineural involvement | |
Autosomal Dominant | ||
TRPC6 (Transient receptor potential cation channel 6) | Familial or sporadic FSGS | |
ACTN4 (alpha-Actinin-4) | Familial or sporadic adult onset FSGS | |
INF2 (Inverted formin 2) | Familial or sporadic adolescence FSGS and adult onset FSGS | |
Laminin alpha 5 (LAMA5) | Adult onset FSGS | |
MYH9 (Myosin heavy chain 9) | Epstein-Fechtner syndrome | |
WT1 (Wilms Tumour 1) | Frasier Syndrome, Denys-Drash syndrome | |
LMNA (Lamin A/C) | Familial partial lipodystrophy and adult onset FSGS |
Sub-Classification | Causes |
---|---|
Reduced renal mass [42] | Congenital absence: Oligomeganephronia, unilateral renal agenesis and vesico-ureteric reflux. Acquired reduction: Post-nephrectomy or post-renal ablation, renal transplant chronic allograft nephropathy |
Normal renal mass [42] | Obesity, diabetic nephropathy, sickle cell anemia, cyanotic heart disease and hypertension. |
Drug-induced [7] | Heroin, interferon, bisphosphonates (particularly pamidronate), anabolic steroids, anthracyclines, calcineurin inhibitors, lithium and sirolimus. |
Viral-induced [46] | HIV, parvovirus B19, CMV, EBV, Hep C, Simian Virus 40 and SARS-CoV-2. |
Drug | Action | Goal |
---|---|---|
Sparsentan | Endothelin A and Angiotensin II antagonist | Preservation of the podocyte cytoskeleton |
Atrasentan | Endothelin A antagonist | Preservation of the podocyte cytoskeleton |
GFB-887 | Small molecule inhibitor of TRPC5 | Prevent podocyte damage. |
BI 764198 | Selective oral TRPC6 inhibitor | Prevent podocyte damage. |
Baricitinib | Janus kinase-STAT inhibitor | Prevention of cytokine-induced APOL-1-related glomerulopathy |
VX-147 (Inaxaplin) | APOL-1 antagonist | Prevention of APOL-1-related kidney disease |
Antisense oligonucleotide inhibitor of APOL-1 | Modify RNA expression of APOL-1. | Prevention of APOL-1-related kidney disease |
Co-enzyme Q10 | Restore normal mitochondrial function and reduce reactive oxygen species. | COQ6, ADCK4 and COQ2 mutations—Genetic FSGS. Prevent podocyte damage and cell death. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni Cathain, D.; Reidy, D.; Bagnasco, S.; Kant, S. Focal and Segmental Glomerulosclerosis: A Comprehensive State-of-the-Art Review. Sclerosis 2025, 3, 24. https://doi.org/10.3390/sclerosis3030024
Ni Cathain D, Reidy D, Bagnasco S, Kant S. Focal and Segmental Glomerulosclerosis: A Comprehensive State-of-the-Art Review. Sclerosis. 2025; 3(3):24. https://doi.org/10.3390/sclerosis3030024
Chicago/Turabian StyleNi Cathain, Dearbhail, Donnchadh Reidy, Serena Bagnasco, and Sam Kant. 2025. "Focal and Segmental Glomerulosclerosis: A Comprehensive State-of-the-Art Review" Sclerosis 3, no. 3: 24. https://doi.org/10.3390/sclerosis3030024
APA StyleNi Cathain, D., Reidy, D., Bagnasco, S., & Kant, S. (2025). Focal and Segmental Glomerulosclerosis: A Comprehensive State-of-the-Art Review. Sclerosis, 3(3), 24. https://doi.org/10.3390/sclerosis3030024