Critical Evaluation of Adipogenic Cell Models: Impact of the Receptor Toolkit on Adipogenic Potential
Abstract
1. Introduction
2. Critical Evaluation of In Vitro Adipogenesis Models: Methodological Considerations and Regulatory Mechanisms
2.1. Human and Murine Models of Adipogenesis: Implications and Limitations
2.2. From Precursor Cells to Adipocytes: Stages and Molecular Regulation of Adipogenesis
2.3. Pharmacological Regulators of Adipogenesis In Vitro
2.4. Current Protocols for Adipocyte Differentiation: Methodological Approaches and Key Limitations
Murine Cell Lines | ||||||||
White Adipocyte Cells | ||||||||
Cell line | Organism | Initial Cell Confluency (n Well in Plate/cm2) | Culture Medium Employed | Differentiation Cocktail Employed | Differentiation Days | Differentiation Efficiency | Validation Method | Reference |
3T3-L1 | Mouse | 50,000 (24) | DMEM-HG 10% BCS 100 U/mL penicillin 100 μg/mL streptomycin 0.25 μg/mL amphotericin B | 1 μg/mL insulin 0.025 µM DEX 0.5 mM IBMX | 7 | ND | Nile Red staining mRNA expression of Pparg, Fabp4 & Plin1 | [37] |
NS | DMEM-HG 10% FBS 100 U/mL penicillin 100 mg/mL streptomycin | 0.02 μg/mL insulin 0.250 µM DEX 0.5 mM IBMX | 7 | ND | Oxygen consumption | [38] | ||
NS | DMEM-HG 110 mg/L sodium pyruvate 10% BCS | 6 μg/mL insulin 0.1 µM DEX 0.5 mM IBMX 1 µM ROSI 250 µM INDO | 10 | 80% | Oil Red O staining | [39] | ||
2000–3000 (cm2) | DMEM-HG 10% BCS 100 U/mL penicillin 100 mg/mL streptomycin | 5 μg/mL insulin 1 μM of DEX 0.5 μM IBMX 2 μM ROSI | 14 | 90% | Oil Red O staining | [40] | ||
30,000 (96) | DMEM-HG 10% BCS 100 U/mL penicillin 100 mg/mL streptomycin | 1.0 μg/mL insulin 0.5 mM IBMX | 10 | ND | Nile Red staining | [41] | ||
10,000 (24) | DMEM/F12 100 U/mL penicillin 100 mg/mL streptomycin 10% FBS | 10 μg/mL insulin 1 μM DEX 0.5 mM IBMX 20 μM rosiglitazone | 8 | 95% | Oil Red O staining | [42] | ||
NS | DMEM 100 mg/mL of kanamycin 10% FBS | 10 µg/mL insulin 1µM DEX 0.5 mM IBMX | 5 | 70% | Oil Red O staining | [43] | ||
30,000 (cm2) | DMEM with 1 g/L glucose 10% FBS 100 U/mL penicillin 100 mg/mL streptomycin 10 g/L-glutamine | 1 μg/mL insulin 0.25 μM DEX 0.5 mM IBMX | 14 | 90% | Oil Red O staining PLIN-1 expression FABP expression | [44] | ||
NS | DMEM F-12 10% BCS 100 U/mL penicillin 100 mg/mL streptomycin | 0.5 μg/mL insulin 5 μM DEX 0.5 mM IBMX 1 μM ROSI 1 nM T3 | 7 | 100% | Lipid quantification | [45] | ||
30,000 (96) | DMEM-HG 10% BCS 100 U/mL penicillin 100 mg/mL streptomycin | 1.0 μg/mL insulin 0.5 mM IBMX | 10 | 80% | Triglyceride Content | [46] | ||
NS | DMEM-HG L-Glutamine 10% BCS 100 U/mL penicillin | 2 µM insulin 1 µM DEX 0.025 mM IBMX | 16–20 | 90% | Oil Red O staining | [47] | ||
NS | DMEM-HG 10% BCS 100 U/mL penicillin | 10 μg/mL insulin 1 μM DEX 0.5 mM IBMX | 6 | 100% | Oil Red O staining Triglyceride accumulation assay | [48] | ||
NS | DMEM 10% FBS 100 μg/mL streptomycin 100 U/mL penicillin 250 ng/mL fungizone | 10 μg/mL insulin 0.1 μM DEX 0.5 mM IBMX | 8 | 90% | Oil Red O staining | [49] | ||
NS | DMEM 10% BCS 2 mM l-glutamine 100 U/mL penicillin 100 U/mL streptomycin | 0.01 µg/mL insulin 1 μM DEX 0.25 mM IBMX | 2 | 55% | PPARG expression | [50] | ||
NS | DMEM 10% FBS | 500 mM IBMX 200 mM indomethacin 1 μM DEX 10 μM Insulin | 10 | >50% | Oil Red O staining | [51] | ||
3T3-F442A | Mouse | 5000 (6) | DMEM-HG 4 mmol/L L-glutamine 1.5 g/L sodium bicarbonate 10% BCS 100 μg/mL streptomycin 100 U/mL penicillin | 10 μg/mL insulin 1 μM rosiglitazone | 7 | 80% | Oil Red O staining | [52] |
NS (48) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 10 μg/mL insulin | 2 | ND | Triglyceride accumulation assay | [53] | ||
3300 (cm2) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 μg/mL insulin 1 μM DEX 5 mM IBMX | 6–8 | 90% | Oil Red O staining | [54] | ||
NS (48) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 10 μg/mL insulin | 3 | ND | LipidTox staining Upregulation of PPARγ and C/EBP-α | [55] | ||
70,000 (6) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL amphotericin | 5 μg/mL insulin | 8 | ND | Oil Red O staining Cygb expression | [56] | ||
NS | DMEM-HG 10% FBS 50 μg/mL streptomycin 100 U/mL penicillin | 58 μg/mL insulin 1 μM DEX 0.5 mM IBMX | 12 | ND | Oil Red O staining | [57] | ||
OP9 | Mouse | 50,000 (24) | αMEM 20% FBS 26 mM sodium bicarbonate 100 U/mL penicillin 100 μg/mL streptomycin 0.25 μg/mL amphotericin B | 1 μg/mL insulin 0.025 μM DEX 0.5 mM IBMX | 7 | 100% | Nile Red staining mRNA expression of Pparg, Fabp4 & Plin1 | [37] |
NS | αMEM 5% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 1 mM rosiglitazone | 10 | 80% | Oil Red O staining | [58] | ||
60,000 (48) | αMEM 20% FBS 100/mL penicillin 100 µg/mL streptomycin 2 M L-glutamine | 10 µg/mL insulin 0.25 µM DEX 0.25 mM IBMX | 6 | ND | Oil Red O staining | [59] | ||
2000 (384) | αMEM 10% FBS 100/mL penicillin 100 µg/mL streptomycin GLUTAMAX | 5 µg/mL insulin 10 µM DEX 0.5 mM IBMX | 6 | ND | Nile Red imaging Trygliceride content assay | [60] | ||
NS | DMEM 5% FBS 1 mM rosiglitazone | 10 µg/mL insulin 1 μM DEX 0.500 mM IBMX 1 μM rosiglitazone | 8 | ND | Oil Red O staining mRNA expression of Pparg, Fabp4 & Plin1 | [61] | ||
NS | αMEM 20% FBS 100 U/mL Penicillin 100 mg/mL Streptomycin 292 mg/mL L-glutamate | 10 µg/mL insulin 1 µM DEX 0.25 mM IBMX | 2 | 80% | PPARG expression | [50] | ||
NS | αMEM 20% FBS 100 U/mL Penicillin 100 mg/mL Streptomycin 292 mg/mL L-glutamate | 10 µg/mL insulin 1 µM DEX 250 mM IBMX | 2 | ND | PPARG expression | [62] | ||
400,000 (24) | DMEM 10% FBS | 10 µg/mL insulin | 5 | 70% | Oil Red O staining | [63] | ||
NS | αMEM 20% FBS | 1 μg/mL of insulin 1 μM DEX 0.5 mM IBMX | 5 | 80% | NS | [64] | ||
D1-ORL-UVA | Mouse | 500 (24) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 µg/mL insulin 0.01 μM DEXA 50 µM INDO | 9 | 40% | Oil Red O staining | [65] |
1000 (24) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 µg/mL insulin 0.01 μM DEXA 50 µM INDO | 15 | ND | NS | [66] | ||
BMS2 | Mouse | 50,000 (NS) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 1 µg/mL insulin 0.25 μM DEXA 0.5 mM IBMX | 8 | 80% | Oil Red O staining | [67] |
20,000 (24) | DMEM-HG 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 µM hydrocortisone 0.5 mM IBMX 5 μM Rosiglitazone 25 μM Pioglitazone 60 µM INDO | 6 | 80% | Oil Red O staining | [68] | ||
OB17 | Mouse | NS | DMEM 10% FBS 33 μM biotin 17 μM sodium pantothenate Penicilin Streptomycin | 17 nM insulin 1.5 nM T3 | 14 | ND | NS | [69] |
3000/cm2 | DMEM 200 U/mL penicilin 50 μg Streptomycin 33 μM biotin 17 μM pantothenate | 17 nM Insulin 2 nM T3 | 19 | ND | ND | [70] | ||
NS | DMEM antibiotics 33μM biotin 17 μM pantothenate | 170 nM Insulin 1.5 nM T3 | 18 | ND | ND | [71] | ||
NS | DMEM antibiotics 33 μM biotin 17 μM pantothenate | 170 nM Insulin 1.5 nM T3 | 16 | ND | ND | [72] | ||
MS5 | NS | aMEM 10% FCS | 5 µg/mL insulin | 15 | ND | ND | [73] | |
19,000–38,000 (12) | DMEM 10% FBS 100 U/mL Penicilin 100 μg/mL streptomycin 2 mM L-glutamine 10 mM HEPES 1 mM sodium piruvate 50 µM mercaptoethanol | STEMPro adipogenesis Kit | 14–21 | 95% | Oil Red O staining | [74] | ||
Brown adipocyte cells | ||||||||
C3H/10T1/2 | Mouse | 20,000 (cm2) | DMEM 10% FBS | 5 µg/mL insulin 0.25 µM DEX 0.5 mM IBMX | 12 | 90% | Oil Red O staining | [75] |
NS | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin 1% L-glutamine | 5 µg/mL insulin 0.2 µM DEX 0.5 mM IBMX 5 µM rosiglitazone | 6–8 | 80% | Oil Red O staining | [76] | ||
NS | DMEM 10% FBS | 5 μg/mL of insulin 0.5 μM DEX 0.25 mM IBMX 50 μM INDO | 5 | 35% | Oil Red O staining | [51] | ||
5000 (96) | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin 1% L-glutamine | 10 µM insulin 1 μM DEX 0.5 mM IBMX 0.5 µM rosiglitazone 0.25 μM INDO | 7 | 80% | Oil Red O staining | [77] | ||
NS | DMEM 10% FBS | 500 mM IBMX 200 mM INDO 1 μM DEX 10 μM Insulin | 10 | >50% | Oil Red O staining | [51] | ||
T37i | Mouse | NS | DMEM/Ham’s F12 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 0.058 µg/mL insulin 2 nM T3 | 8 | ND | mRNA expression | [78] |
10,000 (24) | DMEM/Ham’s F12 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 0.6 µg/mL insulin 2 nM T3 | 9 | 95% | Oil Red O staining Trygliceride content assay | [79] | ||
NS | DMEM/Ham’s F12 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 0.12 µg/mL insulin 2 nM T3 | 7 | 35% | mRNA expression | [80] | ||
HIB1B | Mouse | NS | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 10 µg/mL insulin 0.25 μM DEX 0.5 mM IBMX | 8 | ND | lipolytic protein markers | [81] |
NS | DMEM 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 0.12 µg/mL insulin 0.25 μM DEX 0.5 mM IBMX 1 nM T3 | 7 | 90% | Oil Red O staining | [82] | ||
BFC-1 | Mouse | NS | DMEM 10% FBS 200 U/mL penicillin 50 μg/mL streptomycin | 0.058 µg/mL insulin 2 nM T3 | NS | ND | mRNA expression | [83] |
Human in vitro cellular model | ||||||||
White adipocyte cells | ||||||||
Cell line | Organism | Initial cell confluency (n well in plate/cm2) | Culture medium employed | Differentiation cocktail employed | Differentiation days | Differentiation Efficiency (based on ORO staining and microscopic analysis) | Validation Method | Reference |
HS-5 | Human | NS | 10% FBS 100 U/mL penicillin 100 μg/mL streptomycin 1% L-glutamine | OriCellTM Supplement For Human Related Stem Cells Adipogenic Differentiation A-I, A-II & B | NS | 80% | Oil Red O staining | [84] |
20,000 (75 cm2) | DMEM 10% FBS 1% antibiotic/antimycotic | 10 µg/mL insulin 500 µM DEX 0.5 mM IBMX 100 µM INDO | 19 | 90% | Oil Red O staining | [85] | ||
300,000 (cm2) | αMEM 10% FBS | 5 µg/mL insulin 0.5 µM DEX 0.25 mM IBMX 50 µM INDO | 14 | 80% | Oil Red O staining | [86] | ||
LiSa-2 | Human | 10,000 (cm2) | DMEM/Ham’s F12 10 mg/mL transferrin 15 mM NaHCO3 15 mM HEPES 33 mM biotin 17 mM pantothenate 100 U/mL penicillin 100 μg/mL streptomycin | 5 µg/mL insulin 0.02 nM T3 1 µM cortisol | 20 | 30% | Sudan red and hematoxylin | [87] |
NS | DMEM/Ham’s F12 2% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 µg/mL insulin 1 mM DEX 1 nM T3 | 9 | ND | Oil Red O staining | [88] | ||
NS | DMEM-F12 33 µM biotin 17 µM pantothenic acid 100 U/mL penicillin/streptomycin 10% FBS | 0.005 µg/mL insulin 0.02 nM T3 1 µM cortisol | NS | ND | Microscopy | [89] | ||
SGBS | Human | NS | DMEM-F12 33 µM biotin 17 µM pantothenic acid 100 U/mL penicillin/streptomycin 10% FBS | 0.1 µg/mL insulin 0.025 μM DEX 0.5 mM IBMX 2 µM rosiglitazone 0.02 nM T3 0.1 µM cortisol | 28 | ND | Microscopy | [89] |
800,000 (15 cm2) | DMEM-F12 66 µM biotin 33 nM pantothenic acid 2% penicillin/streptomycin antibiotics | 0.5 µg/mL insulin 0.095 µM DEX 1.9 mM IBMX 7.6 µM rosiglitazone 0.76 nM T3 380 nM cortisol | 12 | 90% | Secretome | [90] | ||
NS (6) | DMEM-F12 3 µM biotin 17 µM pantothenic acid 0.5% penicillin 0.5% streptomycin 0.5% amphotericin B | 0.116 µg/mL insulin 0.25 µM DEX 0.5 mM IBMX 2 µM troglitazone 0.2 nM T3 100 nM cortisol | 7 | ND | Triglyceride accumulation assay | [91] | ||
NS (12) | DMEM-F12 33 µM biotin 17 µM pantothenic acid 100 U/mL penicillin/streptomycin 10% FBS | 0.1 µg/mL insulin 0.025 µM DEX 0.5 mM IBMX 2 µM rosiglitazone 0.02 nM T3 100 nM cortisol | 12 | ND | RNAm and Oxygen consumption | [92] | ||
LS14 | Human | 500 (96) | DMEM-F-12 33 µM biotin 17 µM pantothenic acid 100 U/mL penicillin/streptomycin | 1 µM insulin 0.25 mM IBMX 2 µM rosiglitazone 1 nM T3 No glucocorticoids | 10 | 58% | Oil Red O staining | [93] |
Human | 100,000 (24) | DMEM/F12 (1:1) 33 µM biotin 0.5% penicillin 0.5% streptomycin 17 µM pantothenic acid 10 µg/mL apotransferrin 200 µM ascorbate phosphate 4 µM oleic acid/BSA 4 µM linoleic acid/BSA | 1 µM human insulin 1 nM T3 2 µM rosiglitazone 1 µM methoprene acid (RXR ligand) 1 µM T0901317 (LXR ligand) 250 µM IBMX No glucocorticoids | 10 | 70–80% mentioned in the text. | ND | [94] | |
ASC52Telo | Human | ND | DMEM/F12 (1:1) GlutaMAX 1x 250 mM sodium piruvate 10% FBS | 100 nM insulin 500 µM DEX 0.25 mM IBMX 2 µM rosiglitazone | 21 | <10% | Oil red O staining | [95] |
ND (12) | DMEM Low glucose 10% FBS | 10 µg/mL insulin 1 µM DEX 0.5 mM IBMX | 21 | 28% | PPARy activation in comparison to MSCs | [96] | ||
Brown adipocyte cells | ||||||||
PAZ6 | Human | NS | DMEM/Ham’s F12 2% FBS 100 U/mL penicillin 100 μg/mL streptomycin | 5 µg/mL insulin 1 μM DEX 1 nM T3 | 9 | ND | Oil Red O staining | [88] |
NS | DMEM-Ham’s F-12 8% FBS 15 mmol/l HEPES | 5 µg/mL insulin 0.1 μM DEX 0.25 mM IBMX 1 mM pioglitazone 1 nM T3 | 14 | ND | Oil Red O staining | [97] | ||
1,500,000 (NS) | DMEM-Ham’s F-12 8% FBS 15 mmol/l HEPES | 5 µg/mL insulin 0.1 μM DEX 0.25 mM IBMX 1 mM pioglitazone 1 nM T3 | 14 | ND | Oil Red O staining | [98] | ||
10,000 (cm2) | DMEM-Ham’s F-12 8% FBS 15 mmol/l HEPES 100 U/mL penicillin 100 μg/mL streptomycin | 0.25 mM IBMX 0.1 nM T3 | 14 | ND | NS | [99] | ||
NS | DMEM-Ham’s F-12 8% FBS 15 mmol/l HEPES 100 U/mL penicillin 100 μg/mL streptomycin | 3 µg/mL insulin 0.1 μM DEX 0.25 mM IBMX 1000 nM pioglitazone 1 nM T3 | 14 | ND | NS | [100] | ||
WT-1 | Human | NS | DMEM 10% FBS penicillin streptomycin | 20 nM insulin 1 μM DEX 0.5 mM IBMX 0.125 mM INDO 1 nM T3 | 6 | ND | NS | [101] |
DMEM 10% FBS | 5 μg/mL insulin 1 μM DEX 0.5 mM IBMX 0.5 μM rosiglitazone | 8 | 80–90% | Oil Red O Staining | [102] |
2.5. Impact of the Culture Conditions on Adipogenic Differentiation
2.6. Impact of the Receptor Toolkit on the Adipogenic Potential of Cellular Models
2.6.1. PPARγ Receptor
2.6.2. Glucocorticoid Receptors
2.6.3. Thyroid Hormone Receptors
2.6.4. Adrenoreceptors (AdrR)
2.6.5. Liver X Receptors (LxRs)
2.6.6. Adenosin Receptors (AdoRs)
2.6.7. Estrogen Receptors (ERs)
3. Perspectives and Critical Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Ambele, M.A.; Dhanraj, P.; Giles, R.; Pepper, M.S. Adipogenesis: A complex interplay of multiple molecular determinants and pathways. Int. J. Mol. Sci. 2020, 21, 4283. [Google Scholar] [CrossRef]
- Poulos, S.P.; Dodson, M.V.; Hausman, G.J. Cell line models for differentiation: Preadipocytes and adipocytes. Exp. Biol. Med. 2010, 235, 1185–1193. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Rupérez, A.I.; Gomez-Llorente, C.; Gil, A.; Aguilera, C.M. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review. Int. J. Mol. Sci. 2016, 17, 1040. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.S.; Ahmad, B.; Serpell, C.J.; Parhar, I.S.; Wong, E.H. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020, 115, 62–84. [Google Scholar] [CrossRef] [PubMed]
- Bahmad, H.F.; Daouk, R.; Azar, J.; Sapudom, J.; Teo, J.C.; Abou-Kheir, W.; Al-Sayegh, M. Modeling adipogenesis: Current and future perspective. Cells 2020, 9, 2326. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Reed, E.; Monti, S.; Schlezinger, J.J. A data-driven transcriptional taxonomy of adipogenic chemicals to identify white and brite adipogens. Environ. Health Perspect. 2021, 129, 077006. [Google Scholar] [CrossRef]
- Cyagen. Available online: https://www.cyagen.com/us/en/product/Human-Related-Mesenchymal-Stem-Cells-Adipogenic-Differentiation-Kit.html (accessed on 10 February 2025).
- Rodriguez, A.M.; Pisani, D.; Dechesne, C.A.; Turc-Carel, C.; Kurzenne, J.Y.; Wdziekonski, B.; Dani, C. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. 2005, 201, 1397–1405. [Google Scholar] [CrossRef]
- Wu, S.H.; Yu, J.H.; Liao, Y.T.; Liu, K.H.; Chiang, E.R.; Chang, M.C.; Wang, J.P. Comparison of the infant and adult adipose-derived mesenchymal stem cells in proliferation, senescence, anti-oxidative ability and differentiation potential. Tissue Eng. Regen. Med. 2022, 19, 589–601. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, B.; Shang, P.; Fu, Y.; Nie, R.; Chamba, Y.; Zhang, H. Comparative transcriptomic profiles of differentiated adipocytes provide insights into adipogenesis mechanisms of subcutaneous and intramuscular fat tissues in pigs. Cells 2022, 11, 499. [Google Scholar] [CrossRef]
- Nandy, A.; Rendina-Ruedy, E. Bone marrow adipocytes—Good, bad, or just different? Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101550. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, M.; Matsubara, Y.; Lin, K.; Sugimachi, K.; Furue, M. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem. Funct. 2009, 27, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-S.; Fang, X.; Wen, X.; Liu, J.-S.; Alip, M.; Sun, T.; Wang, Y.-Y.; Chen, H.-W. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation. World J. Stem Cells 2024, 16, 245–256. [Google Scholar] [CrossRef]
- Chan, W.C.W.; Tan, Z.; To, M.K.T.; Chan, D. Regulation and role of transcription factors in osteogenesis. Int. J. Mol. Sci. 2021, 22, 5445. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Z.; Yan, S.; Zhao, L.; Liu, J.; Zhao, L.; Chen, D. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun. Biol. 2022, 5, 495. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J. Lipid Res. 2012, 53, 227–246. [Google Scholar] [CrossRef]
- Ntambi, J.M.; Young-Cheul, K. Adipocyte differentiation and gene expression. J. Nutr. 2000, 130, 3122S–3126S. [Google Scholar] [CrossRef]
- Ussar, S.; Lee, K.Y.; Dankel, S.N.; Boucher, J.; Haering, M.F.; Kleinridders, A.; Thomou, T.; Xue, R.; Macotela, Y.; Kahn, C.R. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl. Med. 2014, 6, 247ra103. [Google Scholar] [CrossRef]
- Pilkington, A.C.; Paz, H.A.; Wankhade, U.D. Beige adipose tissue identification and marker specificity—Overview. Front. Endocrinol. 2021, 12, 599134. [Google Scholar] [CrossRef]
- Rosen, E.D.; Hsu, C.-H.; Wang, X.; Sakai, S.; Freeman, M.W.; Gonzalez, F.J.; Spiegelman, B.M. C/EBPalpha induces adipogenesis through PPARgamma: A unified pathway. Genes Dev. 2002, 16, 22–26. [Google Scholar] [CrossRef]
- Dubuquoy, L.; Dharancy, S.; Nutten, S.; Pettersson, S.; Auwerx, J.; Desreumaux, P. Role of peroxisome proliferator-activated receptor gamma and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 2002, 360, 1410–1418. [Google Scholar] [CrossRef]
- Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 1995, 270, 12953–12956. [Google Scholar] [CrossRef] [PubMed]
- MacDougald, O.A.; Cornelius, P.; Liu, R.; Lane, M.D. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J. Biol. Chem. 1995, 270, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Wolins, N.E.; Quaynor, B.K.; Skinner, J.R.; Tzekov, A.; Park, C.; Choi, K.; Bickel, P.E. OP9 mouse stromal cells rapidly differentiate into adipocytes: Characterization of a useful new model of adipogenesis. J. Lipid Res. 2006, 47, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Eid, M.; Dodgson, J.; Davies, G.; Musial, B.; Wabitsch, M.; Church, C.; Hornigold, D.C. In vitro characterization of the effects of chronic insulin stimulation in mouse 3T3-L1 and human SGBS adipocytes. Adipocyte 2020, 9, 415–426. [Google Scholar] [CrossRef]
- Kim, S.P.; Ha, J.M.; Yun, S.J.; Kim, E.K.; Chung, S.W.; Hong, K.W.; Kim, C.D.; Bae, S.S. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem. Biophys. Res. Commun. 2010, 399, 55–59. [Google Scholar] [CrossRef]
- Lee, H.-L.; Qadir, A.S.; Park, H.-J.; Chung, E.; Lee, Y.-S.; Woo, K.M.; Ryoo, H.-M.; Kim, H.J.; Baek, J.-H. cAMP/Protein Kinase A signaling inhibits Dlx5 expression via activation of CREB and subsequent C/EBPβ induction in 3T3-L1 preadipocytes. Int. J. Mol. Sci. 2018, 19, 3161. [Google Scholar] [CrossRef]
- Sai, S.; Esteves, C.L.; Kelly, V.; Michailidou, Z.; Anderson, K.; Coll, A.P.; Nakagawa, Y.; Ohzeki, T.; Seckl, J.R.; Chapman, K.E. Glucocorticoid regulation of the promoter of 11beta-hydroxysteroid dehydrogenase type 1 is indirect and requires CCAAT/enhancer-binding protein-beta. Mol. Endocrinol. 2008, 22, 2049–2060. [Google Scholar] [CrossRef]
- Ayala-Sumuano, J.-T.; Velez-delValle, C.; Beltrán-Langarica, A.; Marsch-Moreno, M.; Hernandez-Mosqueira, C.; Kuri-Harcuch, W. Glucocorticoid paradoxically recruits adipose progenitors and impairs lipid homeostasis and glucose transport in mature adipocytes. Sci. Rep. 2013, 3, 2573. [Google Scholar] [CrossRef]
- Zubiría, M.G.; Giordano, A.P.; Gambaro, S.E.; Alzamendi, A.; Frontini-López, Y.R.; Moreno, G.; Spinedi, E.; Giovambattista, A. Dexamethasone primes adipocyte precursor cells for differentiation by enhancing adipogenic competency. Life Sci. 2020, 261, 118363. [Google Scholar] [CrossRef]
- Yau, W.W.; Singh, B.K.; Lesmana, R.; Zhou, J.; Sinha, R.A.; Wong, K.A.; Wu, Y.; Bay, B.-H.; Sugii, S.; Sun, L.; et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2018, 15, 131–150. [Google Scholar] [CrossRef]
- Liu, S.; Shen, S.; Yan, Y.; Sun, C.; Lu, Z.; Feng, H.; Ma, Y.; Tang, Z.; Yu, J.; Wu, Y.; et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat. Commun. 2022, 13, 3394. [Google Scholar] [CrossRef]
- Huang, L.H.; Guo, Z.F.; Huang, M.J.; Zeng, X.Y.; Huang, H.B. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci. Rep. 2024, 14, 20370. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.M.; Lenhard, J.M.; Oliver, B.B.; Ringold, G.M.; Kliewer, S.A. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 1997, 272, 3406–3410. [Google Scholar] [CrossRef] [PubMed]
- Overby, H.; Yang, Y.; Xu, X.; Wang, S.; Zhao, L. Indomethacin promotes browning and brown adipogenesis in both murine and human fat cells. Pharmacol. Res. Perspect. 2020, 8, e00592. [Google Scholar] [CrossRef] [PubMed]
- Andrews, F.V.; Kim, S.M.; Edwards, L.; Schlezinger, J.J. Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol. Vitr. 2020, 67, 104904. [Google Scholar] [CrossRef]
- Morrison, S.; McGee, S.L. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 2015, 4, 295–302. [Google Scholar] [CrossRef]
- Kraus, N.A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B.J.; Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 2016, 5, 351–358. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Wang, C.; Bai, L.; Wang, Y.; Wang, W.; Wang, J. A comparison of methods for effective differentiation of the frozen-thawed 3T3-L1 cells. Anal. Biochem. 2019, 568, 57–64. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Hoffman, K.; Völker, J.; Pu, Y.; Veiga-Lopez, A.; Kim, S.M.; Stapleton, H.M. Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology 2021, 461, 152900. [Google Scholar] [CrossRef]
- Pu, Y.; Veiga-Lopez, A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cell Biol. Int. 2017, 41, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Ukita, M.; Yamaguchi, T.; Ohata, N.; Tamura, M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J. Cell. Biochem. 2016, 117, 1419–1428. [Google Scholar] [CrossRef]
- Josan, C.; Kakar, S.; Raha, S. Matrigel® enhances 3T3-L1 cell differentiation. Adipocyte 2021, 10, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.N.; Yang, J.Y.; England, E.; Yin, A.; Baile, C.A.; Rayalam, S. Isoproterenol increases uncoupling, glycolysis, and markers of beiging in mature 3T3-L1 adipocytes. PLoS ONE 2015, 10, e0138344. [Google Scholar] [CrossRef]
- Luz, A.L.; Kassotis, C.D.; Stapleton, H.M.; Meyer, J.N. The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARγ activation, in 3T3-L1 cells. Toxicology 2018, 393, 150–159. [Google Scholar] [CrossRef]
- Teixeira, C.; Sousa, A.P.; Santos, I.; Rocha, A.C.; Alencastre, I.; Pereira, A.C.; Fernandes, R. Enhanced 3T3-L1 differentiation into adipocytes by pioglitazone pharmacological activation of peroxisome proliferator activated receptor-gamma (PPAR-γ). Biology 2022, 11, 806. [Google Scholar] [CrossRef]
- Li, Y.; Rong, Y.; Bao, L.; Nie, B.; Ren, G.; Zheng, C.; Huggins, K.W. Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells. Lipids Health Dis. 2017, 16, 181. [Google Scholar] [CrossRef]
- Martini, C.N.; Gabrielli, M.; Bonifacino, G.; Codesido, M.M.; Vila, M.D.C. Lead enhancement of 3T3-L1 fibroblasts differentiation to adipocytes involves ERK, C/EBPβ and PPARγ activation. Mol. Cell. Biochem. 2018, 437, 37–44. [Google Scholar] [CrossRef]
- Bahrami-Nejad, Z.; Zhao, M.L.; Tholen, S.; Hunerdosse, D.; Tkach, K.E.; van Schie, S.; Teruel, M.N. A transcriptional circuit filters oscillating circadian hormonal inputs to regulate fat cell differentiation. Cell Metab. 2018, 27, 854–868. [Google Scholar] [CrossRef]
- Zhang, S.; You, Y.; Li, Y.; Yuan, H.; Zhou, J.; Tian, L.; Zhu, E. Foxk1 stimulates adipogenic differentiation via a peroxisome proliferator-activated receptor gamma 2-dependent mechanism. FASEB J. 2023, 37, e23266. [Google Scholar] [CrossRef]
- Torabi, S.; Mo, H. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation. Exp. Biol. Med. 2016, 241, 493–500. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Wu, J. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells. PLoS ONE 2015, 10, e0117492. [Google Scholar] [CrossRef]
- Khalilpourfarshbafi, M.; Devi Murugan, D.; Abdul Sattar, M.Z.; Sucedaram, Y.; Abdullah, N.A. Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice. PLoS ONE 2019, 14, e0218792. [Google Scholar] [CrossRef]
- Jahandideh, F.; Chakrabarti, S.; Davidge, S.T.; Wu, J. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PLoS ONE 2017, 12, e0185653. [Google Scholar] [CrossRef]
- Doğan, A.; Demirci, S.; Kıratlı, B.; Şahin, F. Cytoglobin: A potential marker for adipogenic differentiation in preadipocytes in vitro. Cytotechnology 2017, 69, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, H.; Gao, P.; Chen, J.; Yu, C.; Zong, C.; Wang, X. The effect of growth hormone on lipid accumulation or maturation in adipocytes. Cell. Physiol. Biochem. 2016, 39, 2135–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, W.; Zhang, J.; Ji, S.; Jing, Z.; Chen, Y.Q. Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. Cell. Mol. Biol. Lett. 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.-S.; Kang, O.-H.; Kim, S.-B.; Mun, S.-H.; Kang, D.-H.; Yang, D.-W.; Kwon, D.-Y. Quercetin prevents adipogenesis by regulation of transcriptional factors and lipases in OP9 cells. Int. J. Mol. Med. 2015, 35, 1779–1785. [Google Scholar] [CrossRef]
- Campos, V.; Rappaz, B.; Kuttler, F.; Turcatti, G.; Naveiras, O. High-throughput, nonperturbing quantification of lipid droplets with digital holographic microscopy. J. Lipid Res. 2018, 59, 1301–1310. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Feng, N.; Jiang, X.; Zhu, S.; Chen, Y.Q. Ndufa6 regulates adipogenic differentiation via Scd1. Adipocyte 2021, 10, 646–657. [Google Scholar] [CrossRef]
- Taylor, B.; Shah, A.; Bielczyk-Maczyńska, E. TGF-β is insufficient to induce adipocyte state loss without concurrent PPARγ downregulation. Sci. Rep. 2020, 10, 14084. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kato, Y.; Shibata, H.; Saitoh, Y.; Miwa, N. Repressive effects of oat extracts on intracellular lipid-droplet formation in adipocytes and a three-dimensional subcutaneous adipose tissue model. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Thunen, A.; La Placa, D.; Zhang, Z.; Shively, J.E. Role of lncRNA LIPE-AS1 in adipogenesis. Adipocyte 2022, 11, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Baskan, O.; Mese, G.; Ozcivici, E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 160–168. [Google Scholar] [CrossRef]
- Sarigil, O.; Anil-Inevi, M.; Yilmaz, E.; Mese, G.; Tekin, H.C.; Ozcivici, E. Label-free density-based detection of adipocytes of bone marrow origin using magnetic levitation. Analyst 2019, 144, 2942–2953. [Google Scholar] [CrossRef]
- Larsen, M.C.; Almeldin, A.; Tong, T.; Rondelli, C.M.; Maguire, M.; Jaskula-Sztul, R.; Jefcoate, C.R. Cytochrome P4501B1 in bone marrow is co-expressed with key markers of mesenchymal stem cells. BMS2 cell line models PAH disruption of bone marrow niche development functions. Toxicol. Appl. Pharmacol. 2020, 401, 115111. [Google Scholar] [CrossRef]
- Kelly, K.A.; Gimble, J.M. 1, 25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 1998, 139, 2622–2628. [Google Scholar] [CrossRef]
- Dace, A.; Martin-El Yazidi, C.; Bonne, J.; Planells, R.; Torresani, J. Calcitriol is a positive effector of adipose differentiation in the OB 17 cell line: Relationship with the adipogenic action of triiodothyronine. Biochem. Biophys. Res. Commun. 1997, 232, 771–776. [Google Scholar] [CrossRef]
- Amri, E.-Z.; Grimaldi, P.; Négrel, R.; Ailhaud, G. Adipose conversion of ob17 cells: Insulin acts solely as a modulator in the expression of the differentiation program. Exp. Cell Res. 1984, 152, 368–377. [Google Scholar] [CrossRef]
- Grimaldi, P.; Djian, P.; Poli, P.; Negrel, R.; Ailhaud, G. Lipogenic and mitogenic effects of insulin during conversion of Ob17 cells to adipose-like cells. Mol. Cell. Endocrinol. 1983, 29, 271–285. [Google Scholar] [CrossRef]
- Djian, P.; Grimaldi, P.; Négrel, R.; Ailhaud, G. Adipose conversion of Ob17 preadipocytes: Relationships between cell division and fat cell cluster formation. Exp. Cell Res. 1982, 142, 273–281. [Google Scholar] [CrossRef]
- Yokota, T.; Meka, C.S.R.; Medina, K.L.; Igarashi, H.; Comp, P.C.; Takahashi, M.; Nishida, M.; Oritani, K.; Miyagawa, J.; Funahashi, T.; et al. Paracrine Regulation of Fat Cell Formation in Bone Marrow Cultures via Adiponectin and Prostaglandins. J. Clin. Investig. 2002, 109, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Schelker, R.C.; Iberl, S.; Müller, G.; Hart, C.; Herr, W.; Grassinger, J. TGF-β1 and CXCL12 Modulate Proliferation and Chemotherapy Sensitivity of Acute Myeloid Leukemia Cells Co-Cultured with Multipotent Mesenchymal Stromal Cells. Leukemia 2017, 31, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Schwind, L.; Schetting, S.; Montenarh, M. Inhibition of protein kinase CK2 prevents adipogenic differentiation of mesenchymal stem cells like C3H/10T1/2 cells. Pharmaceuticals 2017, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Cricrí, D.; Coppi, L.; Pedretti, S.; Mitro, N.; Caruso, D.; De Fabiani, E.; Crestani, M. Histone deacetylase 3 regulates adipocyte phenotype at early stages of differentiation. Int. J. Mol. Sci. 2021, 22, 9300. [Google Scholar] [CrossRef]
- Alashi, A.M.; Blanchard, C.L.; Mailer, R.J.; Agboola, S.O.; Mawson, A.J.; Aluko, R.E.; Strappe, P. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells. Food Chem. 2015, 185, 226–232. [Google Scholar] [CrossRef]
- Dimitriadis, G.K.; Adya, R.; Tan, B.K.; Jones, T.A.; Menon, V.S.; Ramanjaneya, M.; Randeva, H.S. Effects of visfatin on brown adipose tissue energy regulation using T37i cells. Cytokine 2019, 113, 248–255. [Google Scholar] [CrossRef]
- Yun, Y.R.; Lee, J.E.; Lee, S.; Hong, S.W. Exploring the anti-obesity effects of kimchi through enhanced thermogenesis in differentiated T37i brown adipocytes. Food Nutr. Res. 2024, 68, 10–29219. [Google Scholar] [CrossRef]
- Marzolla, V.; Feraco, A.; Gorini, S.; Mammi, C.; Marrese, C.; Mularoni, V.; Caprio, M. The novel non-steroidal MR antagonist finerenone improves metabolic parameters in high-fat diet-fed mice and activates brown adipose tissue via AMPK-ATGL pathway. FASEB J. 2020, 34, 12450–12465. [Google Scholar] [CrossRef]
- Pham, H.G.; Mukherjee, S.; Choi, M.J.; Yun, J.W. BMP11 regulates thermogenesis in white and brown adipocytes. Cell Biochem. Funct. 2021, 39, 496–510. [Google Scholar] [CrossRef]
- Abdul Majeed, S.; Dunzendorfer, H.; Weiner, J.; Heiker, J.T.; Kiess, W.; Körner, A.; Landgraf, K. COBL, MKX and MYOC are potential regulators of brown adipose tissue development associated with obesity-related metabolic dysfunction in children. Int. J. Mol. Sci. 2023, 24, 3085. [Google Scholar] [CrossRef]
- Zovich, D.C.; Orologa, A.; Okuno, M.; Kong, L.W.; Talmage, D.A.; Piantedosi, R.; Blaner, W.S. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes. J. Biol. Chem. 1992, 267, 13884–13889. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Yang, X.; Chen, B.; Zhang, W. Small extracellular vesicles derived from adipocytes attenuate intervertebral disc degeneration in rats by rejuvenating senescent nucleus pulposus cells and endplate cells by delivering exogenous NAMPT. Oxid. Med. Cell. Longev. 2021, 2021, 9955448. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, M.; Barbagallo, I.; Licari, M.; Carota, G.; Sferrazzo, G.; Spampinato, M.; Sorrenti, V.; Vanella, L. N-Acetylcysteine (NAC) ameliorates lipid-related metabolic dysfunction in bone marrow stromal cells-derived adipocytes. Evid.-Based Complement. Altern. Med. 2018, 2018, 5310961. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Dong, Y.; Tian, L.; Zhou, J.; Zhu, E.; Yuan, H.; Wang, B. Metastasis suppressor 1 interacts with protein tyrosine phosphatase receptor-δ to regulate adipogenesis. FASEB J. 2023, 37, e22857. [Google Scholar] [CrossRef]
- Wabitsch, M.; Brüderlein, S.; Melzner, I.; Braun, M.; Mechtersheimer, G.; Möller, P. LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int. J. Cancer 2000, 88, 889–894. [Google Scholar] [CrossRef]
- Van Beek, E.A.; Bakker, A.H.; Kruyt, P.M.; Vink, C.; Saris, W.H.; Franssen-van Hal, N.L.W.; Keijer, J. Comparative expression analysis of isolated human adipocytes and the human adipose cell lines LiSa-2 and PAZ6. Int. J. Obes. 2008, 32, 912–921. [Google Scholar] [CrossRef]
- Monastra, G.; Gambioli, R.; Unfer, V.; Forte, G.; Maymo-Masip, E.; Comitato, R. D-Chiro-Inositol and Myo-Inositol Induce WAT/BAT Trans-Differentiation in Two Different Human Adipocyte Models (SGBS and LiSa-2). Int. J. Mol. Sci. 2023, 24, 7421. [Google Scholar] [CrossRef]
- Rosenow, A.; Arrey, T.N.; Bouwman, F.G.; Noben, J.P.; Wabitsch, M.; Mariman, E.C.; Renes, J. Identification of novel human adipocyte secreted proteins by using SGBS cells. J. Proteome Res. 2010, 9, 5389–5401. [Google Scholar] [CrossRef]
- Takahashi, A.; Koike, R.; Watanabe, S.; Kuribayashi, K.; Wabitsch, M.; Miyamoto, M.; Iwata, T. Polypeptide N-acetylgalactosaminyltransferase-15 regulates adipogenesis in human SGBS cells. Sci. Rep. 2024, 14, 20049. [Google Scholar] [CrossRef]
- Klusóczki, Á.; Veréb, Z.; Vámos, A.; Fischer-Posovszky, P.; Wabitsch, M.; Bacso, Z.; Kristóf, E. Differentiating SGBS adipocytes respond to PPARγ stimulation, irisin and BMP7 by functional browning and beige characteristics. Sci. Rep. 2019, 9, 5823. [Google Scholar] [CrossRef]
- Hugo, E.R.; Brandebourg, T.D.; Comstock, C.E.; Gersin, K.S.; Sussman, J.J.; Ben-Jonathan, N. LS14: A novel human adipocyte cell line that produces prolactin. Endocrinology 2006, 147, 306–313. [Google Scholar] [CrossRef]
- Hugo, E.R.; Borcherding, D.C.; Gersin, K.S.; Loftus, J.; Ben-Jonathan, N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J. Clin. Endocrinol. Metab. 2008, 93, 4006–4012. [Google Scholar] [CrossRef]
- Masnikov, D.; Stafeev, I.; Michurina, S.; Zubkova, E.; Mamontova, E.; Ratner, E.; Menshikov, M.; Parfyonova, Y. hTERT-immortalized adipose-derived stem cell line ASC52Telo demonstrates limited potential for adipose biology research. Anal. Biochem. 2021, 628, 114268. [Google Scholar] [CrossRef]
- Primak, A.; Kalinina, N.; Skryabina, M.; Usachev, V.; Chechekhin, V.; Vigovskiy, M.; Chechekhina, E.; Voloshin, N.; Kulebyakin, K.; Kulebyakina, M. Novel Immortalized Human Multipotent Mesenchymal Stromal Cell Line for Studying Hormonal Signaling. Int. J. Mol. Sci. 2024, 25, 2421. [Google Scholar] [CrossRef] [PubMed]
- Strobel, A.; Siquier, K.; Zilberfarb, V.; Strosberg, A.D.; Issad, T. Effect of thiazolidinediones on expression of UCP2 and adipocyte markers in human PAZ6 adipocytes. Diabetologia 1999, 42, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Zilberfarb, V.; Siquier, K.; Strosberg, A.D.; Issad, T. Effect of dexamethasone on adipocyte differentiation markers and tumour necrosis factor-α expression in human PAZ6 cells. Diabetologia 2001, 44, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Jockers, R.; Issad, T.; Zilberfarb, V.; De Coppet, P.; Marullo, S.; Strosberg, A.D. Desensitization of the β-adrenergic response in human brown adipocytes. Endocrinology 1998, 139, 2676–2684. [Google Scholar] [CrossRef]
- Brydon, L.; Petit, L.; Delagrange, P.; Strosberg, A.D.; Jockers, R. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 2001, 142, 4264–4271. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, Q.; Combs, M.; Wabitsch, M.; Mack, C.P.; Taylor, J.M. GRAF1 deficiency leads to defective brown adipose tissue differentiation and thermogenic response. Sci. Rep. 2024, 14, 28692. [Google Scholar] [CrossRef]
- Murholm, M.; Dixen, K.; Hansen, J.B. Ras signalling regulates differentiation and UCP1 expression in models of brown adipogenesis. Biochim. Biophys. Acta Gen. Subj. 2010, 1800, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, H.; Tran, K.; Civini, S.; Jin, P.; Castiello, L.; Feng, J.; Kuznetsov, S.A.; Robey, P.G.; Sabatino, M.; et al. Human Bone Marrow Stromal Cell Confluence: Effects on Cell Characteristics and Methods of Assessment. Cytotherapy 2015, 17, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Abo-Aziza, F.A.M.; Zaki, A.A. The Impact of Confluence on Bone Marrow Mesenchymal Stem (BMMSC) Proliferation and Osteogenic Differentiation. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 121–132. [Google Scholar] [PubMed]
- Mehra, A.; Macdonald, I.; Pillay, T.S. Variability in 3T3-L1 adipocyte differentiation depending on cell culture dish. Anal. Biochem. 2007, 362, 281–283. [Google Scholar] [CrossRef]
- Marcon, B.H.; Shigunov, P.; Spangenberg, L.; Pereira, I.T.; de Aguiar, A.M.; Amorín, R.; Rebelatto, C.K.; Correa, A.; Dallagiovanna, B. Cell cycle genes are downregulated after adipogenic triggering in human adipose tissue-derived stem cells by regulation of mRNA abundance. Sci. Rep. 2019, 9, 5611. [Google Scholar]
- Lefterova, M.I.; Haakonsson, A.K.; Lazar, M.A.; Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014, 25, 293–302. [Google Scholar] [CrossRef]
- Tontonoz, P.; Hu, E.; Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 1994, 79, 1147–1156. [Google Scholar] [CrossRef]
- Rosen, E.D.; Sarraf, P.; Troy, A.E.; Bradwin, G.; Moore, K.; Milstone, D.S.; Spiegelman, B.M.; Mortensen, R.M. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999, 4, 611–617. [Google Scholar] [CrossRef]
- Zhu, J.; Guérineau, H.; Lefebvre-Fortané, A.-M.; Largeaud, L.; Lambert, J.; Rousselot, P.; Boudouin, M.; Calvo, J.; Prost, S.; Clauser, S.; et al. The AXL inhibitor bemcentinib overcomes microenvironment-mediated resistance to pioglitazone in acute myeloid leukemia. FEBS J. 2025, 292, 115–128. [Google Scholar] [CrossRef]
- Nakashima, K.-I.; Okamura, M.; Matsumoto, I.; Kameda, N.; Tsuboi, T.; Yamaguchi, E.; Itoh, A.; Inoue, M. Regulation of adipogenesis through retinoid X receptor and/or peroxisome proliferator-activated receptor by designed lignans based on natural products in 3T3-L1 cells. J. Nat. Med. 2023, 77, 315–326. [Google Scholar]
- Bauerle, K.T.; Hutson, I.; Scheller, E.L.; Harris, C.A. Glucocorticoid Receptor Signaling Is Not Required for In Vivo Adipogenesis. Endocrinology 2018, 159, 2050–2061. [Google Scholar] [CrossRef]
- Liu, H.; Wei, N.; Joshi, V.; Yu, Y.; Kim, N.; Krishnamachari, Y.; Zhang, Q.; Salem, A.K. Effects of Glucocorticoid Receptor Small Interfering RNA Delivered Using Poly Lactic-Co-Glycolic Acid Microparticles on Proliferation and Differentiation Capabilities of Human Mesenchymal Stromal Cells. Tissue Eng. Part A 2012, 18, 775–784. [Google Scholar]
- Vernocchi, S.; Battello, N.; Schmitz, S.; Revets, D.; Billing, A.M.; Turner, J.D.; Muller, C.P. Membrane Glucocorticoid Receptor Activation Induces Proteomic Changes Aligning with Classical Glucocorticoid Effects. Mol. Cell. Proteom. 2013, 12, 1764–1779. [Google Scholar] [CrossRef] [PubMed]
- Gametchu, B.; Watson, C.S.; Wu, S. Use of Receptor Antibodies to Demonstrate Membrane Glucocorticoid Receptor in Cells from Human Leukemic Patients. FASEB J. 1993, 7, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Tuffin, L.J.; Jewell, C.M.; Bienstock, R.J.; Collins, J.B.; Cidlowski, J.A. Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active. Mol. Cell. Biol. 2007, 27, 2266–2282. [Google Scholar] [CrossRef]
- Han, L.; Wang, B.; Wang, R.; Gong, S.; Chen, G.; Xu, W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res. Ther. 2019, 10, 377. [Google Scholar] [CrossRef]
- Obregon, M.-J. Thyroid hormone and adipocyte differentiation. Thyroid 2008, 18, 185–195. [Google Scholar] [CrossRef]
- Mishra, A.; Zhu, X.-G.; Ge, K.; Cheng, S.-Y. Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms. J. Mol. Endocrinol. 2010, 44, 247–255. [Google Scholar] [CrossRef]
- Roth, L.; Johann, K.; Hönes, G.S.; Oelkrug, R.; Wagner, L.; Hoffmann, A.; Krohn, K.; Moeller, L.C.; Weiner, J.; Heiker, J.T.; et al. Thyroid hormones regulate Zfp423 expression in regionally distinct adipose depots through direct and cell-autonomous action. Cell Rep. 2023, 42, 112088. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, S.; Yan, Y.; Zhang, S.; Liu, S.; Tang, Z.; Yu, J.; Ma, M.; Niu, Z.; Li, Z.; et al. Adipocyte Thyroid Hormone β Receptor-Mediated Hormone Action Fine-tunes Intracellular Glucose and Lipid Metabolism and Systemic Homeostasis. Diabetes 2023, 72, 562–574. [Google Scholar] [CrossRef]
- Lin, J.Z.; Martagón, A.J.; Cimini, S.L.; Gonzalez, D.D.; Tinkey, D.W.; Biter, A.; Baxter, J.D.; Webb, P.; Gustafsson, J.-Å.; Hartig, S.M.; et al. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat. Cell Rep. 2015, 13, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Merlin, J.; Bengtsson, T.; Hutchinson, D.S. Adrenoceptors in white, brown, and brite adipocytes. Br. J. Pharmacol. 2019, 176, 2416–2432. [Google Scholar] [CrossRef] [PubMed]
- Guest, S.J.; Hadcock, J.R.; Watkins, D.C.; Malbon, C.C. Beta 1- and beta 2-adrenergic receptor expression in differentiating 3T3-L1 cells. Independent regulation at the level of mRNA. J. Biol. Chem. 1990, 265, 5370–5375. [Google Scholar] [CrossRef] [PubMed]
- Roshanzadeh, A.; Yadav, A.K.; Pydi, S.P.; Kimura, T.; Jang, B.C. Expression and role of β3-adrenergic receptor during the differentiation of 3T3-L1 preadipocytes into adipocytes. Biology 2022, 11, 772. [Google Scholar] [CrossRef]
- Tyurin-Kuzmin, P.A.; Chechekhin, V.I.; Ivanova, A.M.; Dyikanov, D.T.; Sysoeva, V.Y.; Kalinina, N.I.; Tkachuk, V.A. Noradrenaline sensitivity is severely impaired in immortalized adipose-derived mesenchymal stem cell line. Int. J. Mol. Sci. 2018, 19, 3712. [Google Scholar] [CrossRef]
- Khadija, E.; Pairault, J.; Fève, B. Triiodothyronine regulates β3-adrenoceptor expression in 3T3-F442A differentiating adipocytes. Eur. J. Biochem. 1996, 239, 519–525. [Google Scholar] [CrossRef]
- Bakopanos, E.; Silva, J.E. Opposing effects of glucocorticoids on β3-adrenergic receptor expression in HIB-1B brown adipocytes. Mol. Cell. Endocrinol. 2002, 190, 29–37. [Google Scholar] [CrossRef]
- Agueda-Oyarzabal, M.; Isidor, M.S.; Plucińska, K.; Ingerslev, L.R.; Dmytriyeva, O.; Petersen, P.S.; Laftih, S.; Pontoppidan, A.B.; Henningsen, J.B.; Rupar, K.; et al. Transcriptomic signatures of cold acclimated adipocytes reveal CXCL12 as a Brown autocrine and paracrine chemokine. Mol. Metab. 2025, 93, 102102. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Masse, L.; Kim, S.; Schlezinger, J.J.; Webster, T.F.; Stapleton, H.M. Characterization of adipogenic chemicals in three different cell culture systems: Implications for reproducibility based on cell source and handling. Sci. Rep. 2017, 7, 42104. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yehuda-Shnaidman, E.; Medvedev, A.V.; Kumar, N.; Daniel, K.W.; Robidoux, J.; Czech, M.P.; Mangelsdorf, D.J.; Collins, S. Liver X receptor α is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol. Cell. Biol. 2008, 28, 2187–2200. [Google Scholar] [CrossRef]
- Laurencikiene, J.; Rydén, M. Liver X receptors and fat cell metabolism. Int. J. Obes. 2012, 36, 1494–1502. [Google Scholar] [CrossRef]
- Gharibi, B.; Abraham, A.A.; Ham, J.; Evans, B.A. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J. Bone Min. Res. 2011, 26, 2112–2124. [Google Scholar] [CrossRef]
- Gharibi, B.; Abraham, A.A.; Ham, J.; Evans, B.A.J. Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int. J. Obes. 2012, 36, 397–406. [Google Scholar] [CrossRef]
- Fuggetta, M.P.; Zonfrillo, M.; Villivà, C.; Bonmassar, E.; Ravagnan, G. Inflammatory microenvironment and adipogenic differentiation in obe-1238 sity: The inhibitory effect of theobromine in a model of human obesity in vitro. Mediat. Inflamm. 2019, 2019, 1515621. [Google Scholar] [CrossRef]
- Eisenstein, A.; Ravid, K. G protein-coupled receptors and adipogenesis: A focus on adenosine receptors. J. Cell Physiol. 2014, 229, 414–421. [Google Scholar] [CrossRef]
- Tatsis-Kotsidis, I.; Erlanger, B.F. Initiation of a process of differentiation by stable transfection of ob17 preadipocytes with the cDNA of human A1 adenosine receptor. Biochem. Pharmacol. 1999, 58, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Yarwood, S.J. The Cyclic AMP Signalling System as a Regulator of Preadipocyte Differentiation; University of Glasgow: Glasgow, UK, 1997. [Google Scholar]
- Bitirim, C.V.; Ozer, Z.B.; Akcali, K.C. Estrogen receptor alpha regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells. PeerJ 2021, 9, e12071. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Gao, Z.L.; Mei, H.; Li, Y.L.; Wang, Y. Differentiation of human mesenchymal stem cells: The potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am. J. Med. Sci. 2011, 341, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghadban, S.; Isern, S.U.; Herbst, K.L.; Bunnell, B.A. The expression of adipogenic marker is significantly increased in estrogen-treated lipedema adipocytes differentiated from adipose stem cells in vitro. Biomedicines 2024, 12, 1042. [Google Scholar] [CrossRef]
- Zhou, S.; Turgeman, G.; Harris, S.E.; Leitman, D.C.; Komm, B.S.; Bodine, P.V.; Gazit, D. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol. Endocrinol. 2003, 17, 56–66. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Otto, T.C.; Lane, M.D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. USA 2004, 101, 9607–9611. [Google Scholar] [CrossRef]
- Ahrens, M.; Ankenbauer, T.; Schröder, D.; Hollnagel, A.; Mayer, H.; Gross, G. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T½ cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993, 12, 871–880. [Google Scholar] [CrossRef]
- Huang, J.; Woods, P.; Normolle, D.; Goff, J.P.; Benos, P.V.; Stehle, C.J.; Steinman, R.A. Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals. Breast Cancer Res. Treat. 2017, 161, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Ruedl, C.; Cappelletti, V.; Coradini, D.; Granata, G.; Di Fronzo, G. Influence of culture conditions on the estrogenic cell growth stimulation of human breast cancer cells. J. Steroid Biochem. Mol. Biol. 1990, 37, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Berthois, Y.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 1986, 83, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Tews, D.; Brenner, R.E.; Siebert, R.; Debatin, K.M.; Fischer-Posovszky, P.; Wabitsch, M. 20 Years with SGBS cells—A versatile in vitro model of human adipocyte biology. Int. J. Obes. 2022, 46, 1939–1947. [Google Scholar] [CrossRef]
- Do, M.S.; Jeong, H.S.; Choi, B.H.; Hunter, L.; Langley, S.; Pazmany, L.; Trayhurn, P. Inflammatory gene expression patterns revealed by DNA microarray analysis in TNF-α-treated SGBS human adipocytes. Yonsei Med. J. 2006, 47, 729–736. [Google Scholar] [CrossRef]
- Schaedlich, K.; Beier, L.S.; Kolbe, J.; Wabitsch, M.; Ernst, J. Pro-inflammatory effects of DEHP in SGBS-derived adipocytes and THP-1 macrophages. Sci. Rep. 2021, 11, 7928. [Google Scholar] [CrossRef]
- Lee, J.Y.; Takahashi, N.; Yasubuchi, M.; Kim, Y.I.; Hashizaki, H.; Kim, M.J.; Kawada, T. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am. J. Physiol.-Cell Physiol. 2012, 302, C463–C472. [Google Scholar] [CrossRef]
- Standaert, M.L.; Kanoh, Y.; Sajan, M.P.; Bandyopadhyay, G.; Farese, R.V. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-λ, and glucose transport in 3T3/L1 adipocytes. Endocrinology 2002, 143, 1705–1716. [Google Scholar] [CrossRef]
- Fernández-Veledo, S.; Nieto-Vazquez, I.; de Castro, J.; Ramos, M.P.; Brüderlein, S.; Möller, P.; Lorenzo, M. Hyperinsulinemia induces insulin resistance on glucose and lipid metabolism in a human adipocytic cell line: Paracrine interaction with myocytes. J. Clin. Endocrinol. Metab. 2008, 93, 2866–2876. [Google Scholar] [CrossRef] [PubMed]
- Ahonen, M.A.; Höring, M.; Nguyen, V.D.; Qadri, S.; Taskinen, J.H.; Nagaraj, M.; Olkkonen, V.M. Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes. Mol. Med. 2022, 28, 68. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yan, X.-L.; Li, R.; Liu, Y.; He, W.; Sun, S.; Zhang, Y.; Liu, B.; Xiong, J.; Mao, N. Characterization of OP9 as authentic mesenchymal stem cell line. J. Genet. Genom. 2010, 37, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.; Doyle, J.R.; Fortin, J.P.; Kopin, A.S.; Ordovás, J.M. Development of an OP9 derived cell line as a robust model to rapidly study adipocyte differentiation. PLoS ONE 2014, 9, e112123. [Google Scholar] [CrossRef]
- Li, X.; Shridas, P.; Forrest, K.; Bailey, W.; Webb, N.R. Group X secretory phospholipase A2 negatively regulates adipogenesis in murine models. FASEB J. 2010, 24, 4313. [Google Scholar] [CrossRef]
- Rubin, C.S.; Hirsch, A.; Fung, C.; Rosen, O.M. Development of hormone receptors and hormonal responsiveness in vitro: Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 1978, 253, 7570–7578. [Google Scholar] [CrossRef]
- Groeneveld, M.P.; Brierley, G.V.; Rocha, N.M.; Siddle, K.; Semple, R.K. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production. Sci. Rep. 2016, 6, 21105. [Google Scholar] [CrossRef]
- Fu, M.; Sun, T.; Bookout, A.L.; Downes, M.; Yu, R.T.; Evans, R.M.; Mangelsdorf, D.J. A Nuclear Receptor Atlas: 3T3-L1 Adipogenesis. Mol. Endocrinol. 2005, 19, 2437–2450. [Google Scholar] [CrossRef]
- Rizzatti, V.; Boschi, F.; Pedrotti, M.; Zoico, E.; Sbarbati, A.; Zamboni, M. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: Size 1108 and optical density distribution. Eur. J. Histochem. 2013, 57, e24. [Google Scholar] [CrossRef]
- Brackett, L.E.; Daly, J.W. Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem. Pharmacol. 1994, 47, 801–814. [Google Scholar] [CrossRef]
- Choudhary, S.A.; Bora, N.; Banerjee, D.; Arora, L.; Das, A.S.; Yadav, R.; Dasgupta, S. A novel small molecule A2A adenosine receptor agonist, indirubin-3′-monoxime, alleviates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Biochem. J. 2019, 476, 2371–2391. [Google Scholar] [CrossRef]
- Saad, M.; Folli, F.; Araki, E.; Hashimoto, N.; Csermely, P.; Kahn, C. Regulation of insulin receptor, insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-F442A adipocytes. Effects of differentiation, insulin, and dexamethasone. Mol. Endocrinol. 1994, 8, 545–557. [Google Scholar]
- Hainque, B.; Moustaid, N.; Quignard-Boulange, A.; Ardouin, B.; Lavau, M. Glucocorticoid binding during the differentiation of 3T3-F442A fibroblasts into adipocytes. A possible regulatory effect of insulin. Biochim. Biophys. Acta Mol. Cell Res. 1987, 931, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.B.; Moon, H.M.; Kim, W.S.; Lee, Y.S.; Jeong, H.W.; Yoo, E.J.; Kim, J.B. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression. Mol. Cell. Biol. 2004, 24, 3430–3444. [Google Scholar] [CrossRef] [PubMed]
- Flores-Delgado, G.; Marsch-Moreno, M.; Kuri-Harcuch, W. Thyroid hormone stimulates adipocyte differentiation of 3T3 cells. Mol. Cell. Biochem. 1987, 76, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Khadija, E.; Courtalon, A.; Gauthereau, X.; Chambaut-Guérin, A.M.; Pairault, J.; Fève, B. Differential regulation by tumor necrosis factor-α of β1-, β2-, and β3-adrenoreceptor gene expression in 3T3-F442A adipocytes. J. Biol. Chem. 1997, 272, 24514–24521. [Google Scholar]
- Grimaldi, P.A. The roles of PPARs in adipocyte differentiation. Prog. Lipid Res. 2001, 40, 269–281. [Google Scholar] [CrossRef]
- Safonova, I.; Darimont, C.; Amri, E.-Z.; Grimaldi, P.; Ailhaud, G.; Reichert, U.; Shroot, B. Retinoids are positive effectors of adipose cell differentiation. Biochem. Pharmacol. 1994, 104, 201–211. [Google Scholar] [CrossRef]
- Schneider, L.; El-Yazidi, C.; Dace, A.; Maraninchi, M.; Planells, R.; Margotat, A.; Torresani, J. Expression of the 1,25-(OH)2 vitamin D3 receptor gene during the differentiation of mouse Ob17 preadipocytes and cross talk with the thyroid hormone receptor signalling pathway. J. Mol. Endocrinol. 2005, 34, 221–235. [Google Scholar] [CrossRef]
- Teboul, M.; Bismuth, J.; Ghiringhelli, O.; Bonne, J.; Torresani, J. Developmental and thyroidal regulation of the nuclear T3 receptors/c-erb A oncogene products in the Ob 17 preadipocyte cell line. J. Recept. Res. 1991, 11, 865–882. [Google Scholar] [CrossRef]
- Mendez-Ferrer, S.; Lucas, D.; Battista, M.; Jang, J.; Frenette, P. Circadian traffic of hematopoietic stem cells is orchestrated by the molecular clock and mediated by β3-adrenergic signals from the sympathetic nervous system. Blood 2007, 110, 219. [Google Scholar] [CrossRef]
- Buyse, M.; Viengchareun, S.A.Y.; Bado, A.; Lombès, M. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB J. 2001, 15, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Gimble, J.M.; Dorheim, M.A.; Cheng, Q.; Medina, K.; Wang, C.S.; Jones, R.; Koren, E.; Pietrangeli, C.; Kincade, P.W. Adipogenesis in a murine bone marrow stromal cell line capable of supporting B lineage lymphocyte growth and proliferation: Biochemical and molecular characterization. Eur. J. Immunol. 1990, 20, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.C.; Berry, R.; Holtrup, B.; Sebo, Z.; Nelson, T.; Fretz, J.A.; Lindskog, D.; Kaplan, J.L.; Ables, G.; Rodeheffer, M.S.; et al. Bone marrow adipocytes. Adipocyte 2017, 6, 193–204. [Google Scholar] [CrossRef]
- Klaus, S.; Choy, L.; Champigny, O.; Cassard-Doulcier, A.M.; Ross, S.; Spiegelman, B.; Ricquier, D. Characterization of the novel brown adipocyte cell line HIB 1B: Adrenergic pathways involved in regulation of uncoupling protein gene expression. J. Cell Sci. 1994, 107, 313–319. [Google Scholar] [CrossRef]
- Hondares, E.; Rosell, M.; Díaz-Delfín, J.; Olmos, Y.; Monsalve, M.; Iglesias, R.; Villarroya, F.; Giralt, M. Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat: Involvement of PRDM16. J. Biol. Chem. 2011, 286, 43112–43122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paz, K.; Liu, Y.F.; Shorer, H.; Hemi, R.; LeRoith, D.; Quan, M.; Zick, Y. Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J. Biol. Chem. 1999, 274, 28816–28822. [Google Scholar] [CrossRef]
- Sheng, X.; Zhu, X.; Zhang, Y.; Cui, G.; Peng, L.; Lu, X.; Zang, Y.Q. Rhein protects against obesity and related metabolic disorders through liver X receptor-mediated uncoupling protein 1 upregulation in brown adipose tissue. Int. J. Biol. Sci. 2012, 8, 1375. [Google Scholar] [CrossRef]
- Soumano, K.; Desbiens, S.; Rabelo, R.; Bakopanos, E.; Camirand, A.; Silva, J.E. Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Life Sci. 2000, 165, 15–26. [Google Scholar] [CrossRef]
- Penfornis, P.; Viengchareun, S.; Le Menuet, D.; Cluzeaud, F.; Zennaro, M.-C.; Lombès, M. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E386–E394. [Google Scholar] [CrossRef]
- Held, N.M.; Kuipers, E.N.; van Weeghel, M.; van Klinken, J.B.; Denis, S.W.; Lombès, M.; Wanders, R.J.; Vaz, F.M.; Rensen, P.C.; Verhoeven, A.J.; et al. Pyruvate dehydrogenase complex plays a central role in brown adipocyte energy expenditure and fuel utilization during short-term beta-adrenergic activation. Sci. Rep. 2018, 8, 9562. [Google Scholar] [CrossRef]
- Chida, K.; Hashiba, H.; Sasaki, K.; Kuroki, T. Activation of Protein Kinase C and specific phosphorylation of a Mr 90,000 membrane protein of promotable BALB/3T3 and C3H/10T½ cells by tumor promoters. Cancer Res. 1986, 46, 1055–1062. [Google Scholar]
- Guernsey, D.L.; Schmidt, T.J. Corticosterone effects on differentiation and X-ray-induced transformation of C3H/10T1/2 mouse cells. Cell Differ. 1988, 24, 159–164. [Google Scholar] [CrossRef]
- Rong, J.X.; Klein, J.L.D.; Qiu, Y.; Xie, M.; Johnson, J.H.; Waters, K.M.; Zhang, V.; Kashatus, J.A.; Remlinger, K.S.; Bing, N.; et al. Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res. 2011, 2011, 179454. [Google Scholar] [CrossRef]
- Ogawa, A.; Ohba, K.I.; Uchida, Y.; Wada, K. New adipogenic cell lines derived from C3H10T1/2. Vitr. Cell. Dev. Biol.-Anim. 1999, 35, 307–310. [Google Scholar] [CrossRef]
- Lindsey, R.C.; Mohan, S. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue. Endocrine 2017, 56, 109–120. [Google Scholar] [CrossRef]
- Takahata, Y.; Takarada, T.; Iemata, M.; Yamamoto, T.; Nakamura, Y.; Kodama, A.; Yoneda, Y. Functional expression of β2 adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. J. Cell. Physiol. 2009, 218, 268–275. [Google Scholar] [CrossRef]
- Tchivileva, I.E.; Tan, K.S.; Gambarian, M.; Nackley, A.G.; Medvedev, A.V.; Romanov, S.; Diatchenko, L. Signaling pathways mediating β3-adrenergic receptor-induced production of interleukin-6 in adipocytes. Mol. Immunol. 2009, 46, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Adamo, A.; Delfino, P.; Gatti, A.; Bonato, A.; Takam Kamga, P.; Bazzoni, R.; Ugel, S.; Mercuri, A.; Caligola, S.; Krampera, M. HS-5 and HS-27A stromal cell lines to study bone marrow mesenchymal stromal cell-mediated support to cancer development. Front. Cell Dev. Biol. 2020, 8, 584232. [Google Scholar] [CrossRef] [PubMed]
- Satilmis, H.; Verheye, E.; Vlummens, P.; Oudaert, I.; Vandewalle, N.; Fan, R.; De Veirman, K. Targeting the β2-adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J. Pathol. 2023, 259, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, H.; Shi, X.; Warren, C.R.; Lotta, L.A.; Friesen, M.; Meissner, T.B.; Langenberg, C.; Wabitsch, M.; Wareham, N.; et al. Functional screening of candidate causal genes for insulin resistance in human preadipocytes and adipocytes. Circ. Res. 2020, 126, 330–346. [Google Scholar] [CrossRef]
- Yeo, C.R.; Agrawal, M.; Hoon, S.; Shabbir, A.; Shrivastava, M.K.; Huang, S.; Toh, S.A. SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Sci. Rep. 2017, 7, 4031. [Google Scholar] [CrossRef] [PubMed]
- Lahnalampi, M.; Heinäniemi, M.; Sinkkonen, L.; Wabitsch, M.; Carlberg, C. Time-resolved expression profiling of the nuclear receptor superfamily in human adipogenesis. PLoS ONE 2010, 5, e12991. [Google Scholar] [CrossRef]
- Ceperuelo-Mallafre, V.; Ejarque, M.; Duran, X.; Pachon, G.; Vazquez-Carballo, A.; Roche, K.; Nunez-Roa, C.; Garrido-Sanchez, L.; Tinahones, F.J.; Vendrell, J.; et al. Zinc-α2-glycoprotein modulates AKT-dependent insulin signaling in human adipocytes by activation of the PP2A phosphatase. PLoS ONE 2015, 10, e0129644. [Google Scholar] [CrossRef] [PubMed]
- Kulebyakin, K.; Tyurin-Kuzmin, P.; Efimenko, A.; Voloshin, N.; Kartoshkin, A.; Karagyaur, M.; Grigorieva, O.; Novoseletskaya, E.; Sysoeva, V.; Makarevich, P.; et al. Decreased Insulin Sensitivity in Telomerase-Immortalized Mesenchymal Stem Cells Affects Efficacy and Outcome of Adipogenic Differentiation in vitro. Front. Cell Dev. Biol. 2021, 9, 662078. [Google Scholar] [CrossRef]
- Lewandowski, M.; Busch, R.; Marschner, J.A.; Merk, D. Comparative Evaluation and Profiling of Chemical Tools for the Nuclear Hormone Receptor Family 2. ACS Pharmacol. Transl. Sci. 2025, 8, 854–870. [Google Scholar] [CrossRef]
- Kazantzis, M.; Takahashi, V.; Hinkle, J.; Kota, S.; Zilberfarb, V.; Issad, T.; Strosberg, A.D. PAZ6 cells constitute a representative model for human brown pre-adipocytes. Front. Endocrinol. 2012, 3, 13. [Google Scholar] [CrossRef]
- Oberkofler, H.; Schraml, E.; Krempler, F.; Patsch, W. Restoration of sterol-regulatory-element-binding protein-1c gene expression in HepG2 cells by peroxisome-proliferator-activated receptor-γ co-activator-1α. Biochem. J. 2004, 381, 357–363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-García, A.; Olivas-Aguirre, F.J.; Olivas-Aguirre, M. Critical Evaluation of Adipogenic Cell Models: Impact of the Receptor Toolkit on Adipogenic Potential. Receptors 2025, 4, 19. https://doi.org/10.3390/receptors4040019
Gutiérrez-García A, Olivas-Aguirre FJ, Olivas-Aguirre M. Critical Evaluation of Adipogenic Cell Models: Impact of the Receptor Toolkit on Adipogenic Potential. Receptors. 2025; 4(4):19. https://doi.org/10.3390/receptors4040019
Chicago/Turabian StyleGutiérrez-García, Andrea, Francisco Javier Olivas-Aguirre, and Miguel Olivas-Aguirre. 2025. "Critical Evaluation of Adipogenic Cell Models: Impact of the Receptor Toolkit on Adipogenic Potential" Receptors 4, no. 4: 19. https://doi.org/10.3390/receptors4040019
APA StyleGutiérrez-García, A., Olivas-Aguirre, F. J., & Olivas-Aguirre, M. (2025). Critical Evaluation of Adipogenic Cell Models: Impact of the Receptor Toolkit on Adipogenic Potential. Receptors, 4(4), 19. https://doi.org/10.3390/receptors4040019