Why Search for Alternative GPCR Agonists?
Abstract
:1. Introduction
- Why search for endogenous agonists?
- Do alternative natural agonists exist?
- Why search for synthetic agonists?
2. Why Search for Endogenous Agonists?
3. Do Alternative Natural Agonists Exist?
4. Why Search for Synthetic Agonists?
5. Finding Synthetic Agonists for Peptidergic Receptors: The Case of Melanin-Concentrating Hormone
6. Finding Synthetic Agonists for Aminergic Receptors: The Case of Bioamines
6.1. The Notion of Specificity
6.2. The Chemical Lesson of Those Structures
7. Practical Approaches
8. Characterization of Agonism
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Shutter, J.R.; Graham, M.; Kinsey, A.C.; Scully, S.; Lüthy, R.; Stark, K.L. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 1997, 11, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Ollmann, M.M.; Wilson, B.D.; Yang, Y.K.; Kerns, J.A.; Chen, Y.; Gantz, I.; Barsh, G.S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Boston, B.A.; Kesterson, R.A.; Hruby, V.J.; Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997, 385, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Yang, H.; Bednarek, M.A.; Galon-Tilleman, H.; Chen, P.; Chen, M.; Lichtman, J.S.; Wang, Y.; Dalmas, O.; Yin, Y.; et al. LEAP2 Is an Endogenous Antagonist of the Ghrelin Receptor. Cell Metab. 2018, 27, 461–469.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayle, M.; Péraldi-Roux, S.; Gautheron, G.; Cros, G.; Oiry, C.; Neasta, J. Liver-Expressed Antimicrobial Peptide 2 antagonizes the insulinostatic effect of ghrelin in rat isolated pancreatic islets. Fundam. Clin. Pharmacol. 2022, 36, 375–377. [Google Scholar] [CrossRef]
- Muratspahić, E.; Freissmuth, M.; Gruber, C.W. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol. Sci. 2019, 40, 309–326. [Google Scholar] [CrossRef]
- van der Westhuizen, E.T.; Valant, C.; Sexton, P.M.; Christopoulos, A. Endogenous allosteric modulators of G protein-coupled receptors. J. Pharmacol. Exp. Ther. 2015, 353, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Christopoulos, A.; Mitchelson, F. 3HN-methylscopolamine dissociation from muscarine receptors affected by low concentrations of allosteric modulators. Eur. J. Pharmacol. 1995, 290, 259–262. [Google Scholar] [CrossRef]
- Ferrisi, R.; Gado, F.; Polini, B.; Ricardi, C.; Mohamed, K.A.; Stevenson, L.A.; Ortore, G.; Rapposelli, S.; Saccomanni, G.; Pertwee, R.G.; et al. Design, synthesis and biological evaluation of novel orthosteric-allosteric ligands of the cannabinoid receptor type 2 (CB2R). Front. Chem. 2022, 10, 984069. [Google Scholar] [CrossRef]
- Wittmann, H.-J.; Seifert, R.; Strasser, A. Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacol. 2014, 2, 1. [Google Scholar] [CrossRef]
- Swaminath, G.; Lee, T.W.; Kobilka, B. Identification of an allosteric binding site for Zn2+ on the β2 adrenergic receptor. J. Biol. Chem. 2003, 278, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, C.; Guenin, S.-P.; Riest-Fery, I.; Perry, T.J.; Legros, C.; Nosjean, O.; Simonneaux, V.; Grützner, F.; Boutin, J.A. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus). PLoS ONE 2018, 13, e0191904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jékely, G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 8702–8707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabeau, O.; Joly, J.-S. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. USA 2013, 110, E2028-37. [Google Scholar] [CrossRef] [Green Version]
- Bach, T.; Syversveen, T.; Kvingedal, A.M.; Krobert, K.A.; Brattelid, T.; Kaumann, A.J.; Levy, F.O. 5HT4(a) and 5-HT4(b) receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. Naunyn Schmiedebergs. Arch. Pharmacol. 2001, 363, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Grailhe, R.; Grabtree, G.W.; Hen, R. Human 5-HT(5) receptors: The 5-HT(5A) receptor is functional but the 5-HT(5B) receptor was lost during mammalian evolution. Eur. J. Pharmacol. 2001, 418, 157–167. [Google Scholar] [CrossRef]
- Beukers, M.W.; Klaassen, C.H.; de Grip, W.J.; Verzijl, D.; Timmerman, H.; Leurs, R. Heterologous expression of rat epitope-tagged histamine H2 receptors in insect Sf9 cells. Br. J. Pharmacol. 1997, 122, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.-M.; Borrelli, E.; Carlsson, A.; Caron, M.G.; Civelli, O.; Espinoza, S.; Fisone, G.; Gainetdinov, R.R.; Grandy, D.K.; Kebabian, J.W.; et al. Dopamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Juárez Olguín, H.; Calderón Guzmán, D.; Hernández García, E.; Barragán Mejía, G. The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 9730467. [Google Scholar] [CrossRef] [Green Version]
- Garris, P.A.; Ciolkowski, E.L.; Pastore, P.; Wightman, R.M. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 1994, 14, 6084–6093. [Google Scholar] [CrossRef]
- Scimemi, A.; Beato, M. Determining the neurotransmitter concentration profile at active synapses. Mol. Neurobiol. 2009, 40, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunahara, R.K.; Guan, H.C.; O’Dowd, B.F.; Seeman, P.; Laurier, L.G.; Ng, G.; George, S.R.; Torchia, J.; van Tol, H.H.; Niznik, H.B. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991, 350, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Myslivecek, J. Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors. Life 2022, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Gerbier, R.; Ndiaye-Lobry, D.; Martinez de Morentin, P.B.; Cecon, E.; Heisler, L.K.; Delagrange, P.; Gbahou, F.; Jockers, R. Pharmacological evidence for transactivation within melatonin MT2 and serotonin 5-HT2C receptor heteromers in mouse brain. FASEB J. 2021, 35, e21161. [Google Scholar] [CrossRef] [PubMed]
- Levoye, A.; Dam, J.; Ayoub, M.A.; Guillaume, J.-L.; Couturier, C.; Delagrange, P.; Jockers, R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006, 25, 3012–3023. [Google Scholar] [CrossRef]
- Radoi, V.; Jakobsson, G.; Palada, V.; Nikosjkov, A.; Druid, H.; Terenius, L.; Kosek, E.; Vukojević, V. Non-Peptide Opioids Differ in Effects on Mu-Opioid (MOP) and Serotonin 1A (5-HT1A) Receptors Heterodimerization and Cellular Effectors (Ca2+, ERK1/2 and p38) Activation. Molecules 2022, 27, 2350. [Google Scholar] [CrossRef]
- Maehle, A.-H. A binding question: The evolution of the receptor concept. Endeavour 2009, 33, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Marín, J.; Reyes-Resina, I.; Martínez-Pinilla, E.; Navarro, G.; Franco, R. Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors. Molecules 2020, 25, 5060. [Google Scholar] [CrossRef]
- Grace, M.K.; Akçakaya, H.R.; Bennett, E.L.; Brooks, T.M.; Heath, A.; Hedges, S.; Hilton-Taylor, C.; Hoffmann, M.; Hochkirch, A.; Jenkins, R.; et al. Testing a global standard for quantifying species recovery and assessing conservation impact. Conserv. Biol. 2021, 35, 1833–1849. [Google Scholar] [CrossRef]
- Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front. Pharmacol. 2020, 11, 397. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- van Baelen, A.-C.; Robin, P.; Kessler, P.; Maïga, A.; Gilles, N.; Servent, D. Structural and Functional Diversity of Animal Toxins Interacting with GPCRs. Front. Mol. Biosci. 2022, 9, 811365. [Google Scholar] [CrossRef] [PubMed]
- Trim, C.M.; Byrne, L.J.; Trim, S.A. Utilisation of compounds from venoms in drug discovery. Prog. Med. Chem. 2021, 60, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Triplitt, C.; Chiquette, E. Exenatide: From the Gila monster to the pharmacy. J. Am. Pharm. Assoc. 2006, 46, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.K.K.; Misuan, N. Exendin-4 from Heloderma suspectum venom: From discovery to its latest application as type II diabetes combatant. Basic Clin. Pharmacol. Toxicol. 2019, 124, 513–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraisamy, K.; Singh, K.; Kumar, M.; Lefranc, B.; Bonnafé, E.; Treilhou, M.; Leprince, J.; Chow, B.K.C. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J. Allergy Clin. Immunol. 2022, 149, 275–291. [Google Scholar] [CrossRef]
- Conlon, J.M.; O’Harte, F.P.M.; Flatt, P.R. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy—A review. Peptides 2022, 147, 170706. [Google Scholar] [CrossRef]
- Koehbach, J.; O’Brien, M.; Muttenthaler, M.; Miazzo, M.; Akcan, M.; Elliott, A.G.; Daly, N.L.; Harvey, P.J.; Arrowsmith, S.; Gunasekera, S.; et al. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc. Natl. Acad. Sci. USA 2013, 110, 21183–21188. [Google Scholar] [CrossRef] [Green Version]
- Keov, P.; Liutkevičiūtė, Z.; Hellinger, R.; Clark, R.J.; Gruber, C.W. Discovery of peptide probes to modulate oxytocin-type receptors of insects. Sci. Rep. 2018, 8, 10020. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Belousoff, M.J.; Liang, Y.-L.; Johnson, R.M.; Josephs, T.M.; Fletcher, M.M.; Christopoulos, A.; Hay, D.L.; Danev, R.; Wootten, D.; et al. A structural basis for amylin receptor phenotype. Science 2022, 375, eabm9609. [Google Scholar] [CrossRef] [PubMed]
- Deganutti, G.; Liang, Y.-L.; Zhang, X.; Khoshouei, M.; Clydesdale, L.; Belousoff, M.J.; Venugopal, H.; Truong, T.T.; Glukhova, A.; Keller, A.N.; et al. Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nat. Commun. 2022, 13, 92. [Google Scholar] [CrossRef]
- Ntie-Kang, F.; Nyongbela, K.D.; Ayimele, G.A.; Shekfeh, S. “Drug-likeness” properties of natural compounds. Phys. Sci. Rev. 2019, 4, 20180169. [Google Scholar] [CrossRef]
- Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef]
- Moro, O.; Lerner, E.A. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J. Biol. Chem. 1997, 272, 966–970. [Google Scholar] [CrossRef] [Green Version]
- Nicole, P.; Lins, L.; Rouyer-Fessard, C.; Drouot, C.; Fulcrand, P.; Thomas, A.; Couvineau, A.; Martinez, J.; Brasseur, R.; Laburthe, M. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J. Biol. Chem. 2000, 275, 24003–24012. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Sreedharan, S.P.; Bolin, D.R.; Gaufo, G.O.; Goetzl, E.J. Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor. J. Pharmacol. Exp. Ther. 1997, 281, 629–633. [Google Scholar]
- Boutin, J.A.; Witt-Enderby, P.A.; Sotriffer, C.; Zlotos, D.P. Melatonin receptor ligands: A pharmaco-chemical perspective. J. Pineal Res. 2020, 69, e12672. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, M.; Huang, Z.; An, J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp. Biol. Med. 2021, 246, 1011–1024. [Google Scholar] [CrossRef]
- Jiao, Z.-T.; Luo, Q. Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022, 14, 4191. [Google Scholar] [CrossRef] [PubMed]
- Broglio, F.; Boutignon, F.; Benso, A.; Gottero, C.; Prodam, F.; Arvat, E.; Ghè, C.; Catapano, F.; Torsello, A.; Locatelli, V.; et al. EP1572: A novel peptido-mimetic GH secretagogue with potent and selective GH-releasing activity in man. J. Endocrinol. Invest. 2002, 25, RC26–RC28. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Biller, B.M.K.; Korbonits, M.; Popovic, V.; Luger, A.; Strasburger, C.J.; Chanson, P.; Medic-Stojanoska, M.; Schopohl, J.; Zakrzewska, A.; et al. Macimorelin as a Diagnostic Test for Adult GH Deficiency. J. Clin. Endocrinol. Metab. 2018, 103, 3083–3093. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.; Aulinas, A. Physiology of the Pineal Gland and Melatonin; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Boutin, J.A.; Jockers, R. Melatonin controversies, an update. J. Pineal Res. 2021, 70, e12702. [Google Scholar] [CrossRef]
- Le Marec, O.; Neveu, C.; Lefranc, B.; Dubessy, C.; Boutin, J.A.; Do-Régo, J.-C.; Costentin, J.; Tonon, M.-C.; Tena-Sempere, M.; Vaudry, H.; et al. Structure-activity relationships of a series of analogues of the RFamide-related peptide 26RFa. J. Med. Chem. 2011, 54, 4806–4814. [Google Scholar] [CrossRef]
- Lefranc, B.; Alim, K.; Neveu, C.; Le Marec, O.; Dubessy, C.; Boutin, J.A.; Chuquet, J.; Vaudry, D.; Prévost, G.; Picot, M.; et al. Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021, 26, 4312. [Google Scholar] [CrossRef]
- Neveu, C.; Dulin, F.; Lefranc, B.; Galas, L.; Calbrix, C.; Bureau, R.; Rault, S.; Chuquet, J.; Boutin, J.A.; Guilhaudis, L.; et al. Molecular basis of agonist docking in a human GPR103 homology model by site-directed mutagenesis and structure-activity relationship studies. Br. J. Pharmacol. 2014, 171, 4425–4439. [Google Scholar] [CrossRef] [Green Version]
- Neveu, C.; Lefranc, B.; Tasseau, O.; Do-Rego, J.-C.; Bourmaud, A.; Chan, P.; Bauchat, P.; Le Marec, O.; Chuquet, J.; Guilhaudis, L.; et al. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J. Med. Chem. 2012, 55, 7516–7524. [Google Scholar] [CrossRef]
- Alim, K.; Lefranc, B.; Sopkova-de Oliveira Santos, J.; Dubessy, C.; Picot, M.; Boutin, J.A.; Vaudry, H.; Chartrel, N.; Vaudry, D.; Chuquet, J.; et al. Design, Synthesis, Molecular Dynamics Simulation, and Functional Evaluation of a Novel Series of 26RFa Peptide Analogues Containing a Mono- or Polyalkyl Guanidino Arginine Derivative. J. Med. Chem. 2018, 61, 10185–10197. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.; Gandolfo, P.; Thoumas, J.L.; Patte, C.; Fauchère, J.L.; Vaudry, H.; Tonon, M.C. Structure-activity relationships of a series of analogues of the octadecaneuropeptide ODN on calcium mobilization in rat astrocytes. J. Med. Chem. 1998, 41, 4433–4438. [Google Scholar] [CrossRef] [PubMed]
- Tonon, M.-C.; Vaudry, H.; Chuquet, J.; Guillebaud, F.; Fan, J.; Masmoudi-Kouki, O.; Vaudry, D.; Lanfray, D.; Morin, F.; Prevot, V.; et al. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol. Ther. 2020, 208, 107386. [Google Scholar] [CrossRef] [PubMed]
- Chatenet, D.; Dubessy, C.; Leprince, J.; Boularan, C.; Carlier, L.; Ségalas-Milazzo, I.; Guilhaudis, L.; Oulyadi, H.; Davoust, D.; Scalbert, E.; et al. Structure-activity relationships and structural conformation of a novel urotensin II-related peptide. Peptides 2004, 25, 1819–1830. [Google Scholar] [CrossRef]
- Vaudry, H.; Leprince, J.; Chatenet, D.; Fournier, A.; Lambert, D.G.; Le Mével, J.-C.; Ohlstein, E.H.; Schwertani, A.; Tostivint, H.; Vaudry, D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: From structure to function. Pharmacol. Rev. 2015, 67, 214–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamori, M.; Blum, W.F.; Török, A.; Stehle, R.; Waibel, E.; Cledon, P.; Ranke, M.B. Immunoreactive insulin-like growth factor binding protein-3 in the culture of human luteinized granulosa cells. Acta Endocrinol. 1991, 124, 685–691. [Google Scholar] [CrossRef]
- Labarrère, P.; Chatenet, D.; Leprince, J.; Marionneau, C.; Loirand, G.; Tonon, M.-C.; Dubessy, C.; Scalbert, E.; Pfeiffer, B.; Renard, P.; et al. Structure-activity relationships of human urotensin II and related analogues on rat aortic ring contraction. J. Enzyme Inhib. Med. Chem. 2003, 18, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.A.; Bedut, S.; Jullian, M.; Galibert, M.; Frankiewicz, L.; Gloanec, P.; Ferry, G.; Puget, K.; Leprince, J. Caloxin-derived peptides for the inhibition of plasma membrane calcium ATPases. Peptides 2022, 154, 170813. [Google Scholar] [CrossRef]
- Imai, K. Extraction of melanophore concentrating hormone (MCH) from the pituitary of fishes. Endocrinol. Jpn. 1958, 5, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Skofitsch, G.; Jacobowitz, D.M.; Zamir, N. Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res. Bull. 1985, 15, 635–649. [Google Scholar] [CrossRef]
- Presse, F.; Sorokovsky, I.; Max, J.-P.; Nicolaidis, S.; Nahon, J.-L. Melanin-concentrating hormone is a potent anorectic peptide regulated by food-deprivation and glucopenia in the rat. Neuroscience 1996, 71, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Fontaine-Bisson, B.; Thorburn, J.; Gregory, A.; Zhang, H.; Sun, G. Melanin-concentrating hormone receptor 1 polymorphisms are associated with components of energy balance in the Complex Diseases in the Newfoundland Population: Environment and Genetics (CODING) study. Am. J. Clin. Nutr. 2014, 99, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audinot, V.; Boutin, J.A.; Lakaye, B.; Nahon, J.-L.; Saito, Y. Melanin-concentrating hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Nothacker, H.P.; Wang, Z.; Lin, S.H.; Leslie, F.; Civelli, O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 1999, 400, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.; Ames, R.S.; Bergsma, D.; Muir, A.; Fitzgerald, L.R.; Hervieu, G.; Dytko, G.M.; Foley, J.J.; Martin, J.; Liu, W.S.; et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999, 400, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Beauverger, P.; Naime, I.; Rique, H.; Ouvry, C.; Souchaud, S.; Dromaint, S.; Nagel, N.; Suply, T.; Audinot, V.; et al. Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2. Mol. Pharmacol. 2001, 60, 632–639. [Google Scholar]
- Audinot, V.; Beauverger, P.; Lahaye, C.; Suply, T.; Rodriguez, M.; Ouvry, C.; Lamamy, V.; Imbert, J.; Rique, H.; Nahon, J.L.; et al. Structure-activity relationship studies of melanin-concentrating hormone (MCH)-related peptide ligands at SLC-1, the human MCH receptor. J. Biol. Chem. 2001, 276, 13554–13562. [Google Scholar] [CrossRef] [Green Version]
- Audinot, V.; Lahaye, C.; Suply, T.; Beauverger, P.; Rodriguez, M.; Galizzi, J.P.; Fauchère, J.L.; Boutin, J.A. 125I-S36057: A new and highly potent radioligand for the melanin-concentrating hormone receptor. Br. J. Pharmacol. 2001, 133, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Audinot, V.; Della Zuana, O.; Fabry, N.; Ouvry, C.; Nosjean, O.; Henlin, J.-M.; Fauchère, J.-L.; Boutin, J.A. S38151 p-guanidinobenzoyl-Des-Gly10-MCH(7-17) is a potent and selective antagonist at the MCH1 receptor and has anti-feeding properties in vivo. Peptides 2009, 30, 1997–2007. [Google Scholar] [CrossRef]
- Boutin, J.A.; Jullian, M.; Frankiewicz, L.; Galibert, M.; Gloanec, P.; Le Diguarher, T.; Dupuis, P.; Ko, A.; Ripoll, L.; Bertrand, M.; et al. MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice. Molecules 2021, 26, 1291. [Google Scholar] [CrossRef]
- Andrade, R.; Barnes, N.M.; Baxter, G.; Bockaert, J.; Branchek, T.; Butler, A.; Cohen, M.L.; Dumuis, A.; Eglen, R.M.; Göthert, M.; et al. 5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Wood, V.; Lock, A.; Harris, M.A.; Rutherford, K.; Bähler, J.; Oliver, S.G. Hidden in plain sight: What remains to be discovered in the eukaryotic proteome? Open Biol. 2019, 9, 180241. [Google Scholar] [CrossRef] [PubMed]
- Laschet, C.; Dupuis, N.; Hanson, J. The G protein-coupled receptors deorphanization landscape. Biochem. Pharmacol. 2018, 153, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Millan, M.J. Actions of roxindole at recombinant human dopamine D2, D3 and D4 and serotonin 5-HT1A, 5-HT1B and 5-HT1D receptors. Naunyn Schmiedebergs. Arch. Pharmacol. 1999, 359, 447–453. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Zhang, H.; Mao, C.; Zhou, X.E.; Cheng, X.; Simon, I.A.; Shen, D.-D.; Yen, H.-Y.; Robinson, C.V.; et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 2021, 592, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Su, H.; Boutin, J.A.; Renard, P.; Wang, M. High-throughput screening assay for new ligands at human melatonin receptors. Acta Pharmacol. Sin. 2008, 29, 1515–1521. [Google Scholar] [CrossRef]
- Lee, P.H.; Hanson, B.J. Development of a GPR23 cell-based β-lactamase reporter assay. Methods Enzymol. 2010, 485, 349–368. [Google Scholar] [CrossRef]
- Burford, N.T.; Wehrman, T.; Bassoni, D.; O’Connell, J.; Banks, M.; Zhang, L.; Alt, A. Identification of selective agonists and positive allosteric modulators for µ- and δ-opioid receptors from a single high-throughput screen. J. Biomol. Screen. 2014, 19, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.M.; Kang, H.J.; McCorvy, J.D.; Glatfelter, G.C.; Jones, A.J.; Che, T.; Slocum, S.; Huang, X.-P.; Savych, O.; Moroz, Y.S.; et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020, 579, 609–614. [Google Scholar] [CrossRef]
- Bock, J.R.; Gough, D.A. Virtual screen for ligands of orphan G protein-coupled receptors. J. Chem. Inf. Model. 2005, 45, 1402–1414. [Google Scholar] [CrossRef]
- Mills, A.; Duggan, M.J. Orphan seven transmembrane domain receptors: Reversing pharmacology. Trends Biotechnol. 1994, 12, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Kotarsky, K.; Nilsson, N.E. Reverse pharmacology and the de-orphanization of 7TM receptors. Drug Discov. Today Technol. 2004, 1, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T. Reverse pharmacology of orexin: From an orphan GPCR to integrative physiology. Regul. Pept. 2005, 126, 3–10. [Google Scholar] [CrossRef]
- Civelli, O. GPCR deorphanizations: The novel, the known and the unexpected transmitters. Trends Pharmacol. Sci. 2005, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Civelli, O.; Reinscheid, R.K.; Zhang, Y.; Wang, Z.; Fredriksson, R.; Schiöth, H.B. G protein-coupled receptor deorphanizations. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 127–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, T.; Kato, N.; Yamada, N. Development of a high-throughput bioassay to screen melatonin receptor agonists using human melatonin receptor expressing CHO cells. Neurosci. Lett. 2003, 344, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Coward, P.; Chan, S.D.; Wada, H.G.; Humphries, G.M.; Conklin, B.R. Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal. Biochem. 1999, 270, 242–248. [Google Scholar] [CrossRef]
- Lenkei, Z.; Beaudet, A.; Chartrel, N.; de Mota, N.; Irinopoulou, T.; Braun, B.; Vaudry, H.; Llorens-Cortes, C. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts. J. Histochem. Cytochem. 2000, 48, 1553–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Ngo, T.; Kufareva, I.; Coleman, J.L.; Graham, R.M.; Abagyan, R.; Smith, N.J. Identifying ligands at orphan GPCRs: Current status using structure-based approaches. Br. J. Pharmacol. 2016, 173, 2934–2951. [Google Scholar] [CrossRef] [Green Version]
- Ijzerman, A.P.; Jacobson, K.A.; Müller, C.E.; Cronstein, B.N.; Cunha, R.A. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol. Rev. 2022, 74, 340–372. [Google Scholar] [CrossRef]
- Alexander, W.; Bernstein, K.E.; Catt, K.J.; de Gasparo, M.; Dhanachandra Singh, K.; Eguchi, S.; Escher, E.; Goodfriend, T.L.; Horiuchi, M.; Hunyady, L.; et al. Angiotensin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef]
- Hoyer, D.; Bartfai, T. Neuropeptides and neuropeptide receptors: Drug targets, and peptide and non-peptide ligands: A tribute to Prof. Dieter Seebach. Chem. Biodivers. 2012, 9, 2367–2387. [Google Scholar] [CrossRef] [PubMed]
- Tzoupis, H.; Nteli, A.; Androutsou, M.-E.; Tselios, T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr. Med. Chem. 2020, 27, 6136–6158. [Google Scholar] [CrossRef] [PubMed]
- Kurose, H.; Kim, S.G. Pharmacology of Antagonism of GPCR. Biol. Pharm. Bull. 2022, 45, 669–674. [Google Scholar] [CrossRef]
- Ariëns, E.J. Intrinsic activity: Partial agonists and partial antagonists. J. Cardiovasc. Pharmacol. 1983, 5 (Suppl. 1), S8–S15. [Google Scholar] [CrossRef]
- Leff, P.; Scaramellini, C.; Law, C.; McKechnie, K. A three-state receptor model of agonist action. Trends Pharmacol. Sci. 1997, 18, 355–362. [Google Scholar] [CrossRef]
- Bond, R.A.; Ijzerman, A.P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 2006, 27, 92–96. [Google Scholar] [CrossRef]
- Wágner, G.; Mocking, T.A.M.; Ma, X.; Slynko, I.; Da Costa Pereira, D.; Breeuwer, R.; Rood, N.J.N.; van der Horst, C.; Vischer, H.F.; de Graaf, C.; et al. SAR exploration of the non-imidazole histamine H3 receptor ligand ZEL-H16 reveals potent inverse agonism. Arch. Pharm. 2022, 356, e2200451. [Google Scholar] [CrossRef]
- Devavry, S.; Legros, C.; Brasseur, C.; Delagrange, P.; Spadoni, G.; Cohen, W.; Malpaux, B.; Boutin, J.A.; Nosjean, O. Description of the constitutive activity of cloned human melatonin receptors hMT1 and hMT2 and discovery of inverse agonists. J. Pineal Res. 2012, 53, 29–37. [Google Scholar] [CrossRef]
- Deluigi, M.; Klipp, A.; Klenk, C.; Merklinger, L.; Eberle, S.A.; Morstein, L.; Heine, P.; Mittl, P.R.E.; Ernst, P.; Kamenecka, T.M.; et al. Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Hall, D.A.; Giraldo, J. Can Adding Constitutive Receptor Activity Redefine Biased Signaling Quantification? Trends Pharmacol. Sci. 2019, 40, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. Emergent Concepts of Receptor Pharmacology. Handb. Exp. Pharmacol. 2019, 260, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Kolb, P.; Kenakin, T.; Alexander, S.P.H.; Bermudez, M.; Bohn, L.M.; Breinholt, C.S.; Bouvier, M.; Hill, S.J.; Kostenis, E.; Martemyanov, K.A.; et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 2022, 179, 3651–3674. [Google Scholar] [CrossRef] [PubMed]
- Legros, C.; Dupré, C.; Brasseur, C.; Bonnaud, A.; Bruno, O.; Valour, D.; Shabajee, P.; Giganti, A.; Nosjean, O.; Kenakin, T.P.; et al. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT1 and MT2 receptors. Pharmacol. Res. Perspect. 2020, 8, e00539. [Google Scholar] [CrossRef] [Green Version]
- Langmead, C.J.; Christopoulos, A. Supra-physiological efficacy at GPCRs: Superstition or super agonists? Br. J. Pharmacol. 2013, 169, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Leprince, J.; Oulyadi, H.; Vaudry, D.; Masmoudi, O.; Gandolfo, P.; Patte, C.; Costentin, J.; Fauchère, J.L.; Davoust, D.; Vaudry, H.; et al. Synthesis, conformational analysis and biological activity of cyclic analogs of the octadecaneuropeptide ODN. Design of a potent endozepine antagonist. Eur. J. Biochem. 2001, 268, 6045–6057. [Google Scholar] [CrossRef]
- Lodge, D. The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 2009, 56, 6–21. [Google Scholar] [CrossRef]
- Beck-Sickinger, A.; Colmers, W.F.; Cox, H.M.; Doods, H.N.; Herzog, H.; Larhammar, D.; Michel, M.C.; Quirion, R.; Schwartz, T.; Westfall, T. Neuropeptide Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Feth, F.; Rascher, W.; Michel, M.C. Neuropeptide Y (NPY) receptors in HEL cells: Comparison of binding and functional parameters for full and partial agonists and a non-peptide antagonist. Br. J. Pharmacol. 1992, 105, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedragosa-Badia, X.; Stichel, J.; Beck-Sickinger, A.G. Neuropeptide Y receptors: How to get subtype selectivity. Front. Endocrinol. 2013, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.-Q.; Sha, X.-Y.; Cheng, J.; Wang, J.; Lin, J.-Y.; An, W.-T.; Pan, W.; Zhang, L.-J.; Tao, X.-N.; Xu, Y.-F.; et al. Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents. Diabetes 2022, 71, 1454–1471. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Chung, K.Y. Many faces of the GPCR-arrestin interaction. Arch. Pharm. Res. 2020, 43, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Pearce, A.; Redfern-Nichols, T.; Harris, M.; Poyner, D.R.; Wigglesworth, M.; Ladds, G. Determining the Effects of Differential Expression of GRKs and β-arrestins on CLR-RAMP Agonist Bias. Front. Physiol. 2022, 13, 840763. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.-X. Constitutive activity in melanocortin-4 receptor: Biased signaling of inverse agonists. Adv. Pharmacol. 2014, 70, 135–154. [Google Scholar] [CrossRef]
- Brulé, C.; Perzo, N.; Joubert, J.-E.; Sainsily, X.; Leduc, R.; Castel, H.; Prézeau, L. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J. 2014, 28, 5148–5162. [Google Scholar] [CrossRef]
- Violin, J.D.; Crombie, A.L.; Soergel, D.G.; Lark, M.W. Biased ligands at G-protein-coupled receptors: Promise and progress. Trends Pharmacol. Sci. 2014, 35, 308–316. [Google Scholar] [CrossRef]
- Rankovic, Z.; Brust, T.F.; Bohn, L.M. Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 2016, 26, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Che, T.; Dwivedi-Agnihotri, H.; Shukla, A.K.; Roth, B.L. Biased ligands at opioid receptors: Current status and future directions. Sci. Signal. 2021, 14, 677. [Google Scholar] [CrossRef]
- Leprince, J.; Bagnol, D.; Bureau, R.; Fukusumi, S.; Granata, R.; Hinuma, S.; Larhammar, D.; Primeaux, S.; Sopkova-de Oliveiras Santos, J.; Tsutsui, K.; et al. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br. J. Pharmacol. 2017, 174, 3573–3607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Cao, Z.; Li, H.; Wang, W.; Tian, Y.; Yan, L.; Liao, Y.; Chen, X.; Chen, Y.; Shi, Y.; et al. Two naturally occurring mutations of human GPR103 define distinct G protein selection bias. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119046. [Google Scholar] [CrossRef] [PubMed]
- Freudenberg, J.M.; Dunham, I.; Sanseau, P.; Rajpal, D.K. Uncovering new disease indications for G-protein coupled receptors and their endogenous ligands. BMC Bioinform. 2018, 19, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 4903–4908. [Google Scholar] [CrossRef]
GPCR | Reference Ligand and pKi | Number of Agonists with Higher Affinities than the Reference Ligand | pKi Max | Number of Agonists with Lower Affinities than the Reference Ligand | pKi Min |
---|---|---|---|---|---|
5-HT1A | 5-HT (pKi 9.5) | 10 | 10.1 | 62 | 5.6 |
5-HT1B | 5-HT (pKi 8.1) | 18 | 9.7 | 42 | 5.3 |
5-HT1D | 5-HT (pKi 8.5) | 28 | 9.6 | 28 | 5.1 |
5-HT1e | 5-HT (pKi 8.1) | 2 | 8.7 | 32 | 5.3 |
5-HT1F | 5-HT (pKi 7.2–8.0) | 8 | 9.4 | 28 | 5.5 |
5-HT2A | 5-HT (pKi 8.9) | 9 | 9.4 | 57 | 5.3 |
5-HT2B | 5-HT (pKi 9.0) | 14 | 9.3 | 42 | 5.4 |
5-HT2C | 5-HT (pKi 7.5) | 28 | 9.1 | 23 | 5.3 |
5-HT4 | 5-HT (pKi 7.7–8.6) | 13 | 9.8 | 17 | 5.6 |
5-HT5A | 5-HT (pKi 6.8) | 2 | 9.7 | 8 | 5.0 |
5-HT6 | 5-HT (pKi 7.9) | 9 | 8.7 | 33 | 5.5 |
5-HT7 | 5-HT (pKi 9.1) | 7 | 9.9 | 32 | 5.3 |
A1 | Adenosine (pKi 7.1) | 22 | 10.0 | 19 | 4.3 |
A2A | Adenosine (pKi 6.8) | 10 | 9.3 | 31 | 5.0 |
A2B | Adenosine (pKi 5.3) | 3 | 8.2 | 11 | 3.4 |
A3 | Adenosine (pKi 6.5) | 33 | 9.7 | 10 | 5.2 |
D1 | Dopamine (pKi 5.0) * | 20 | 9.1 | 1 | 4.3 |
D2 | Dopamine (pKi 4.7–7.2) | 38 | 10.2 | 3 | 4.7 |
D3 | Dopamine (pKi 6.4) | 28 | 10.1 | 1 | 6.1 |
D4 | Dopamine (pKi 7.6) | 8 | 9.4 | 7 | 5.4 |
D5 | Dopamine (pKi 6.6) * | 5 | 8.5 | 12 | 4.9 |
H1 | Histamine (pKi 5.3) | 10 | 6.5 | 5 | 3.7 |
H2 | Histamine (pKi 3.8) | 7 | 7.2 | 0 | 3.8 |
H3 | Histamine (pKi 8.0) | 25 | 10.0 | 6 | 6.1 |
H4 | Histamine (pKi 7.4) | 9 | 8.2 | 9 | 5.2 |
MT1 | Melatonin (pKi 9.5) | 13 | 10.9 | 13 | 5.0 |
MT2 | Melatonin (pKi 9.6) | 20 | 12.0 | 10 | 5.5 |
Receptor Subtype | NPY1 | NPY2 | NPY4 | NPY5 | NPY6 * |
---|---|---|---|---|---|
Endogenous ligand preference | NPY = PYY >> PP | NPY = PYY >> PP | PP >> NPY = PYY | NPY > PYY > PP | NPY = PYY > PP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutin, J.A.; Leprince, J. Why Search for Alternative GPCR Agonists? Receptors 2023, 2, 16-33. https://doi.org/10.3390/receptors2010002
Boutin JA, Leprince J. Why Search for Alternative GPCR Agonists? Receptors. 2023; 2(1):16-33. https://doi.org/10.3390/receptors2010002
Chicago/Turabian StyleBoutin, Jean A., and Jérôme Leprince. 2023. "Why Search for Alternative GPCR Agonists?" Receptors 2, no. 1: 16-33. https://doi.org/10.3390/receptors2010002