Acute Biodistribution Comparison of Fentanyl and Morphine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Standards and Reagents
2.3. Subjects
2.4. Whole-Body Plethysmography
2.4.1. Apparatus
2.4.2. Three-Phase Whole-Body Plethysmography Protocol
2.5. Tissue Collection
2.6. Solid-Phase Extraction
2.7. Liquid Chromatography–Tandem Mass Spectrometry
2.8. Statistics
3. Results
3.1. Dose Response of Fentanyl- and Morphine-Induced Respiratory Depression
3.2. Comparison of Fentanyl, Morphine, and Metabolite Biodistribution over Time after Acute Injection
4. Discussion
4.1. Fentanyl and Morphine Dose Response in Respiratory Depression
4.2. Quantification of Fentanyl, Morphine, and Select Metabolites
4.3. Biodistribution of Fentanyl and Morphine after Acute Administration
4.4. Acute Biodistribution of Fentanyl in Rodent Models
4.5. Acute Biodistribution of Morphine in Rodent Models
4.6. Clinical Context
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jannetto, P.J.; Helander, A.; Garg, U.; Janis, G.C.; Goldberger, B.; Ketha, H. The Fentanyl Epidemic and Evolution of Fentanyl Analogs in the United States and the European Union. Clin. Chem. 2019, 65, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Kuczyńska, K.; Grzonkowski, P.; Kacprzak, L.; Zawilska, J.B. Abuse of fentanyl: An emerging problem to face. Forensic Sci. Int. 2018, 289, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Stanley, T.H. The fentanyl story. J. Pain. 2014, 15, 1215–1226. [Google Scholar] [CrossRef]
- Spencer, M.R.; Warner, M.; Cisewski, J.A.; Miniño, A.; Dodds, D.; Perera, J.; Ahmad, F.B. Estimates of Drug Overdose Deaths Involving Fentanyl, Methamphetamine, Cocaine, Heroin, and Oxycodone: United States, 2021; Report No. 27; Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2023; pp. 1–14.
- National Institute on Drug Abuse. Drug Overdose Deaths: Facts and Figures. Available online: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates#Fig1 (accessed on 14 May 2024).
- Sertürner, F.W.A. Darstellung der reinen Mohnsäure (Opiumsäure) nebst einer Chemischen Untersuchung des Opiums mit vorzüglicher Hinsicht auf einendarin neu entdeckten Stoff und die dahin gehörigen Bemerkungen. J. Pharme Ärzte Apoth. Chem. 1806, 14, 47–93. [Google Scholar]
- Kelly, E.; Sutcliffe, K.; Cavallo, D.; Ramos-Gonzalez, N.; Alhosan, N.; Henderson, G. The anomalous pharmacology of fentanyl. Br. J. Pharmacol. 2023, 180, 797–812. [Google Scholar] [CrossRef]
- Dosen-Micovic, L.; Ivanovic, M.; Micovic, V. Steric interactions and the activity of fentanyl analogs at the mu-opioid receptor. Bioorg. Med. Chem. 2006, 14, 2887–2895. [Google Scholar] [CrossRef]
- Ellis, C.R.; Kruhlak, N.L.; Kim, M.T.; Hawkins, E.G.; Stavitskaya, L. Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking. PLoS ONE 2018, 13, e0197734. [Google Scholar] [CrossRef] [PubMed]
- de Waal, P.W.; Shi, J.; You, E.; Wang, X.; Melcher, K.; Jiang, Y.; Xu, H.E.; Dickson, B.M. Molecular mechanisms of fentanyl mediated beta-arrestin biased signaling. PLoS Comput. Biol. 2020, 16, e1007394. [Google Scholar] [CrossRef]
- Vo, Q.N.; Mahinthichaichan, P.; Shen, J.; Ellis, C.R. How mu-opioid receptor recognizes fentanyl. Nat. Commun. 2021, 12, 984. [Google Scholar] [CrossRef]
- Kapoor, A.; Martinez-Rosell, G.; Provasi, D.; de Fabritiis, G.; Filizola, M. Dynamic and Kinetic Elements of micro-Opioid Receptor Functional Selectivity. Sci. Rep. 2017, 7, 11255. [Google Scholar] [CrossRef]
- Roy, S.D.; Flynn, G.L. Solubility and related physicochemical properties of narcotic analgesics. Pharm. Res. 1988, 5, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Santhakumar, R.; Dewey, W.; Kelly, E.; Henderson, G. Fentanyl depression of respiration: Comparison with heroin and morphine. Br. J. Pharmacol. 2020, 177, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, K.J.; Charlton, S.J.; Sessions, R.B.; Henderson, G.; and Kelly, E. Fentanyl binds to the μ-opioid receptor via the lipid membrane and transmembrane helices. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kalvass, J.C.; Olson, E.R.; Cassidy, M.P.; Selley, D.E.; Pollack, G.M. Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: Assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J. Pharmacol. Exp. Ther. 2007, 323, 346–355. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Fentanyl. Available online: https://www.cdc.gov/overdose-prevention/about/fentanyl.html?CDC_AAref_Val=https://www.cdc.gov/opioids/basics/fentanyl.html (accessed on 13 April 2024).
- Somerville, N.J.; O’Donnell, J.; Gladden, R.M.; Zibbell, J.E.; Green, T.C.; Younkin, M.; Ruiz, S.; Babakhanlou-Chase, H.; Chan, M.; Callis, B.P.; et al. Characteristics of Fentanyl Overdose—Massachusetts, 2014–2016. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 382–386. [Google Scholar] [CrossRef]
- Mahonski, S.G.; Leonard, J.B.; Gatz, J.D.; Seung, H.; Haas, E.E.; Kim, H.K. Prepacked naloxone administration for suspected opioid overdose in the era of illicitly manufactured fentanyl: A retrospective study of regional poison center data. Clin. Toxicol. 2020, 58, 117–123. [Google Scholar] [CrossRef]
- Mayer, S.; Boyd, J.; Collins, A.; Kennedy, M.C.; Fairbairn, N.; McNeil, R. Characterizing fentanyl-related overdoses and implications for overdose response: Findings from a rapid ethnographic study in Vancouver, Canada. Drug Alcohol. Depend. 2018, 193, 69–74. [Google Scholar] [CrossRef]
- Moe, J.; Godwin, J.; Purssell, R.; O’Sullivan, F.; Hau, J.P.; Purssell, E.; Curran, J.; Doyle-Waters, M.M.; Brasher, P.M.A.; Buxton, J.A.; et al. Naloxone dosing in the era of ultra-potent opioid overdoses: A systematic review. Can. J. Emerg. Med. 2020, 22, 178–186. [Google Scholar] [CrossRef]
- Sutter, M.E.; Gerona, R.R.; Davis, M.T.; Roche, B.M.; Colby, D.K.; Chenoweth, J.A.; Adams, A.J.; Owen, K.P.; Ford, J.B.; Black, H.B.; et al. Fatal Fentanyl: One Pill Can Kill. Acad. Emerg. Med. 2017, 24, 106–113. [Google Scholar] [CrossRef]
- Grell, F.L.; Koons, R.A.; Denson, J.S. Fentanyl in anesthesia: A report of 500 cases. Anesth. Analg. 1970, 49, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Comstock, M.K.; Carter, J.G.; Moyers, J.R.; Stevens, W.C. Rigidity and hypercarbia associated with high dose fentanyl induction of anesthesia. Anesth. Analg. 1981, 60, 362–363. [Google Scholar] [CrossRef]
- Benthuysen, J.L.; Smith, N.T.; Sanford, T.J.; Head, N.; Dec-Silver, H. Physiology of alfentanil-induced rigidity. Anesthesiology 1986, 64, 440–446. [Google Scholar] [CrossRef]
- Abrams, J.T.; Horrow, J.C.; Bennett, J.A.; Van Riper, D.F.; Storella, R.J. Upper airway closure: A primary source of difficult ventilation with sufentanil induction of anesthesia. Anesth. Analg. 1996, 83, 629–632. [Google Scholar] [CrossRef]
- Bennett, J.A.; Abrams, J.T.; Van Riper, D.F.; Horrow, J.C. Difficult or impossible ventilation after sufentanil-induced anesthesia is caused primarily by vocal cord closure. Anesthesiology 1997, 87, 1070–1074. [Google Scholar] [CrossRef]
- Elder, H.J.; Varshneya, N.B.; Walentiny, D.M.; Beardsley, P.M. Amphetamines modulate fentanyl-depressed respiration in a bidirectional manner. Drug Alcohol. Depend. 2023, 243, 109740. [Google Scholar] [CrossRef]
- Varshneya, N.B.; Hassanien, S.H.; Holt, M.C.; Stevens, D.L.; Layle, N.K.; Bassman, J.R.; Iula, D.M.; Beardsley, P.M. Respiratory depressant effects of fentanyl analogs are opioid receptor-mediated. Biochem. Pharmacol. 2022, 195, 114805. [Google Scholar] [CrossRef]
- Appelgren, L.E.; Terenius, L. Differences in the autoradiographic localization of labelled morphine-like analgesics in the mouse. Acta Physiol. Scand. 1973, 88, 175–182. [Google Scholar] [CrossRef]
- Heydari, P.; Martins, M.L.F.; Rosing, H.; Hillebrand, M.J.X.; Gebretensae, A.; Schinkel, A.H.; Beijnen, J.H. Development and validation of a UPLC-MS/MS method with a broad linear dynamic range for the quantification of morphine, morphine-3-glucuronide and morphine-6-glucuronide in mouse plasma and tissue homogenates. J. Chromatogr. B 2021, 1166, 122403. [Google Scholar] [CrossRef]
- Schinkel, A.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; Borst, P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Investig. 1995, 96, 1698–1705. [Google Scholar] [CrossRef]
- Zelcer, N.; van de Wetering, K.; Hillebrand, M.; Sarton, E.; Kuil, A.; Wielinga, P.R.; Tephly, T.; Dahan, A.; Beijnen, J.H.; Borst, P. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc. Natl. Acad. Sci. USA 2005, 102, 7274–7279. [Google Scholar] [CrossRef]
- Ishikawa, K.; Shibanoki, S.; McGaugh, J.L. Direct correlation between level of morphine and its biochemical effect on monoamine systems in mouse brain. Evidence for involvement of dopaminergic neurons in the pharmacological action of acute morphine. Biochem. Pharmacol. 1983, 32, 1473–1478. [Google Scholar] [CrossRef]
- Jin, W.Q.; Xu, H.; Chi, Z.Q. Absorption, distribution and excretion of 3-methyl[carbonyl-14C] fentanyl in mice. Zhongguo Yao Li Xue Bao 1986, 7, 399–401. [Google Scholar]
- Bian, J.T.; Bhargava, H.N. Effect of chronic administration of L-arginine, NG-nitro-L-arginine or their combination on morphine concentration in peripheral tissues and urine of the mouse. Gen. Pharmacol. 1998, 30, 753–757. [Google Scholar] [CrossRef]
- Bhargava, H.N.; Bian, J.T. Effects of acute administration of L-arginine on morphine antinociception and morphine distribution in central and peripheral tissues of mice. Pharmacol. Biochem. Behav. 1998, 61, 29–33. [Google Scholar] [CrossRef]
- Stout, P.R.; Claffey, D.J.; Ruth, J.A. Fentanyl in hair. Chemical factors involved in accumulation and retention of fentanyl in hair after external exposure or in vivo deposition. Drug Metab. Dispos. 1998, 26, 689–700. [Google Scholar]
- Leal, T.; Lebacq, J.; Vanbinst, R.; Lederman, C.; De Kock, M.; Wallemacq, P. Successful protocol of anaesthesia for measuring transepithelial nasal potential difference in spontaneously breathing mice. Lab. Anim. 2006, 40, 43–52. [Google Scholar] [CrossRef]
- Karinen, R.; Andersen, J.M.; Ripel, A.; Hasvold, I.; Hopen, A.B.; Morland, J.; Christophersen, A.S. Determination of heroin and its main metabolites in small sample volumes of whole blood and brain tissue by reversed-phase liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2009, 33, 345–350. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Xu, M.; Gu, J.; Yu, L.; Zeng, S. Simultaneous analysis of gemfibrozil, morphine, and its two active metabolites in different mouse brain structures using solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry with a deuterated internal standard. J. Sep. Sci. 2016, 39, 2087–2096. [Google Scholar] [CrossRef]
- Bremer, P.T.; Kimishima, A.; Schlosburg, J.E.; Zhou, B.; Collins, K.C.; Janda, K.D. Combatting Synthetic Designer Opioids: A Conjugate Vaccine Ablates Lethal Doses of Fentanyl Class Drugs. Angew. Chem. Int. Ed. 2016, 55, 3772–3775. [Google Scholar] [CrossRef]
- Weinsanto, I.; Laux-Biehlmann, A.; Mouheiche, J.; Maduna, T.; Delalande, F.; Chavant, V.; Gabel, F.; Darbon, P.; Charlet, A.; Poisbeau, P.; et al. Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice. Br. J. Pharmacol. 2018, 175, 3844–3856. [Google Scholar] [CrossRef]
- Zhu, P.; Ye, Z.; Guo, D.; Xiong, Z.; Huang, S.; Guo, J.; Zhang, W.; Polli, J.E.; Zhou, H.; Li, Q.; et al. Irinotecan Alters the Disposition of Morphine Via Inhibition of Organic Cation Transporter 1 (OCT1) and 2 (OCT2). Pharm. Res. 2018, 35, 243. [Google Scholar] [CrossRef]
- Chen, M.; Guo, L.; Dong, D.; Yu, F.; Zhang, T.; Wu, B. The nuclear receptor Shp regulates morphine withdrawal syndrome via modulation of Ugt2b expression in mice. Biochem. Pharmacol. 2019, 161, 163–172. [Google Scholar] [CrossRef]
- Raleigh, M.D.; Baruffaldi, F.; Peterson, S.J.; Le Naour, M.; Harmon, T.M.; Vigliaturo, J.R.; Pentel, P.R.; Pravetoni, M. A Fentanyl Table 1Vaccine Alters Fentanyl Distribution and Protects against Fentanyl-Induced Effects in Mice and Rats. J. Pharmacol. Exp. Ther. 2019, 368, 282–291. [Google Scholar] [CrossRef]
- Smith, L.C.; Bremer, P.T.; Hwang, C.S.; Zhou, B.; Ellis, B.; Hixon, M.S.; Janda, K.D. Monoclonal Antibodies for Combating Synthetic Opioid Intoxication. J. Am. Chem. Soc. 2019, 141, 10489–10503. [Google Scholar] [CrossRef]
- Ban, B.; Barrientos, R.C.; Oertel, T.; Komla, E.; Whalen, C.; Sopko, M.; You, Y.; Banerjee, P.; Sulima, A.; Jacobson, A.E.; et al. Novel chimeric monoclonal antibodies that block fentanyl effects and alter fentanyl biodistribution in mice. mAbs 2021, 13, 1991552. [Google Scholar] [CrossRef]
- Powers, N.; Massena, C.; Crouse, B.; Smith, M.; Hicks, L.; Evans, J.T.; Miller, S.; Pravetoni, M.; Burkhart, D. Self-Adjuvanting TLR7/8 Agonist and Fentanyl Hapten Co-Conjugate Achieves Enhanced Protection against Fentanyl Challenge. Bioconjug Chem. 2023, 34, 1811–1821. [Google Scholar] [CrossRef]
- Björkman, S.; Stanski, D.R. Simultaneous determination of fentanyl and alfentanil in rat tissues by capillary column gas chromatography. J. Chromatogr. 1988, 433, 95–104. [Google Scholar] [CrossRef]
- Björkman, S.; Stanski, D.R.; Verotta, D.; Harashima, H. Comparative tissue concentration profiles of fentanyl and alfentanil in humans predicted from tissue/blood partition data obtained in rats. Anesthesiology 1990, 72, 865–873. [Google Scholar] [CrossRef]
- Schneider, E.; Brune, K. Distribution of fentanyl in rats: An autoradiographic study. Naunyn Schmiedebergs Arch. Pharmacol. 1985, 331, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Brune, K. Opioid activity and distribution of fentanyl metabolites. Naunyn Schmiedebergs Arch. Pharmacol. 1986, 334, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahim, D.; Bowden-Jones, O. The Misuse of Synthetic Opioids: Harms and Clinical Management of Fentanyl, Fentanyl Analogues and Other Novel Synthetic Opioids; NEPTUNE: London, UK, 2018; pp. 1–29. [Google Scholar]
- Peirson, S.N.; Brown, L.A.; Pothecary, C.A.; Benson, L.A.; Fisk, A.S. Light and the laboratory mouse. J. Neurosci. Methods 2018, 300, 26–36. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonised Guideline: Bioanalytical Method Validation and Study Sample Analysis M10. 2022. Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 31 July 2023).
- Grung, M.; Skurtveit, S.; Aasmundstad, T.A.; Handal, M.; Alkana, R.L.; Morland, J. Morphine-6-glucuronide-induced locomotor stimulation in mice: Role of opioid receptors. Pharmacol. Toxicol. 1998, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Handal, M.; Grung, M.; Skurtveit, S.; Ripel, A.; Morland, J. Pharmacokinetic differences of morphine and morphine-glucuronides are reflected in locomotor activity. Pharmacol. Biochem. Behav. 2002, 73, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, A.J.; Michalkiewicz, A.; Morley, J.S.; MacKinnon, K.; Billington, D. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions. Biochem. Pharmacol. 1992, 43, 2335–2340. [Google Scholar] [CrossRef]
- Hill, R.; Lyndon, A.; Withey, S.; Roberts, J.; Kershaw, Y.; MacLachlan, J.; Lingford-Hughes, A.; Kelly, E.; Bailey, C.; Hickman, M.; et al. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine. Neuropsychopharmacology 2016, 41, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Gaugler, S.; Rykyl, J.; Grill, M.; Cebolla, V.L. Fully automated drug screening of dried blood spots using online LC-MS/MS analysis. J. Appl. Bioanal. 2018, 4, 7–15. [Google Scholar] [CrossRef]
- Ferreira, E.; Corte Real, F.; Pinho, E.M.T.; Margalho, C. A Novel Bioanalytical Method for the Determination of Opioids in Blood and Pericardial Fluid. J. Anal. Toxicol. 2020, 44, 754–768. [Google Scholar] [CrossRef]
- Øiestad, E.L.; Johansen, U.; Oiestad, A.M.; Christophersen, A.S. Drug screening of whole blood by ultra-performance liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2011, 35, 280–293. [Google Scholar] [CrossRef]
- Vandenbosch, M.; Pajk, S.; Van Den Bogaert, W.; Wuestenbergs, J.; Van de Voorde, W.; Cuypers, E. Postmortem Analysis of Opioids and Metabolites in Skeletal Tissue. J. Anal. Toxicol. 2022, 46, 783–790. [Google Scholar] [CrossRef]
- Guillot, E.; de Mazancourt, P.; Durigon, M.; Alvarez, J.C. Morphine and 6-acetylmorphine concentrations in blood, brain, spinal cord, bone marrow and bone after lethal acute or chronic diacetylmorphine administration to mice. Forensic Sci. Int. 2007, 166, 139–144. [Google Scholar] [CrossRef]
- Gabel, F.; Hovhannisyan, V.; Andry, V.; Goumon, Y. Central metabolism as a potential origin of sex differences in morphine antinociception but not induction of antinociceptive tolerance in mice. Br. J. Pharmacol. 2023, 180, 843–861. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, P.; Ricciarello, R.; Pichini, S.; Pacifici, R.; Altieri, I.; Pellegrini, M.; D’Ascenzo, G. Simultaneous determination of heroin 6-monoacetylmorphine, morphine, and its glucuronides by liquid chromatography--atmospheric pressure ionspray-mass spectrometry. J. Anal. Toxicol. 1997, 21, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Hug, C.C., Jr.; Murphy, M.R. Tissue redistribution of fentanyl and termination of its effects in rats. Anesthesiology 1981, 55, 369–375. [Google Scholar] [CrossRef]
- Iula, D.M. What Do We Know about the Metabolism of the New Fentanyl Derivatives? Available online: https://www.caymanchem.com/news/what-do-we-know-about-the-metabolism-of-the-new-fentanyl-derivative (accessed on 13 April 2024).
- Gardocki, J.F.; Yelnosky, J. A Study of Some of the Pharmacologic Actions of Fentanyl Citrate. Toxicol. Appl. Pharmacol. 1964, 6, 48–62. [Google Scholar] [CrossRef]
- Newman, M.; Lynch, C.; Connery, H.; Goldsmith, W.; Nurkiewicz, T.; Raylman, R.; Boyd, J. Fentanyl overdose: Temporal effects and prognostic factors in SKH1 mice. Basic. Clin. Pharmacol. Toxicol. 2024, 134, 460–471. [Google Scholar] [CrossRef]
- Jensen, B.C.; Swigart, P.M.; De Marco, T.; Hoopes, C.; Simpson, P.C. alpha1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ. Heart Fail. 2009, 2, 654–663. [Google Scholar] [CrossRef]
- Torralva, R.; Eshleman, A.J.; Swanson, T.L.; Schmachtenberg, J.L.; Schutzer, W.E.; Bloom, S.H.; Wolfrum, K.M.; Reed, J.F.; Janowsky, A. Fentanyl but not Morphine Interacts with Nonopioid Recombinant Human Neurotransmitter Receptors and Transporters. J. Pharmacol. Exp. Ther. 2020, 374, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Elkiweri, I.A.; Zhang, Y.L.; Christians, U.; Ng, K.Y.; Tissot van Patot, M.C.; Henthorn, T.K. Competitive substrates for P-glycoprotein and organic anion protein transporters differentially reduce blood organ transport of fentanyl and loperamide: Pharmacokinetics and pharmacodynamics in Sprague-Dawley rats. Anesth. Analg. 2009, 108, 149–159. [Google Scholar] [CrossRef]
- United States Drug Enforcement Administration. Facts about Fentanyl. Available online: https://www.dea.gov/resources/facts-about-fentanyl (accessed on 14 April 2024).
- Ruzycki, S.; Yarema, M.; Dunham, M.; Sadrzadeh, H.; Tremblay, A. Intranasal Fentanyl Intoxication Leading to Diffuse Alveolar Hemorrhage. J. Med. Toxicol. 2016, 12, 185–188. [Google Scholar] [CrossRef]
- Chapman, E.; Leipsic, J.; Satkunam, N.; Churg, A. Pulmonary alveolar proteinosis as a reaction to fentanyl patch smoke. Chest 2012, 141, 1321–1323. [Google Scholar] [CrossRef]
Mouse Strain/Sex | Matrices | Analytes Measured | Method | LOQ/LOD |
---|---|---|---|---|
Both sexes (strain not stated) [30] | Brain, gall bladder, intestine, placental barrier, and urine | 3H-labeled fentanyl and dihydromorphine | Whole-body autoradiography | N/A |
Male ICR [34] | Brain | Morphine | HPLC-ECD | Not stated |
Not specified [35] | Blood, lung, heart, kidney, brain, liver, and fat | 3-methyl[carbonyl-14C]fentanyl | Radioimmunoassay | N/A |
mdr1a(+/+) & (−/−) [32] | Plasma, brain, muscle, heart, kidney, liver, gall bladder, lung, stomach, small intestine, colon, testis, spleen, and thymus | [3H]Morphine | Liquid scintillation counting | N/A |
Male Swiss Webster [36] | Lung, liver, kidney, spleen, and urine | Morphine | Radioimmunoassay | LOD: 0.8 ng/mL |
Male Swiss Webster [37] | Serum, brain, spinal cord, lung, liver, kidneys, spleen, and urine | Morphine | Radioimmunoassay | LOD: 0.8 ng/mL |
Male BALB/c [38] | Hair | Fentanyl | GC/MS | LOQ: 0.2 ng/mL |
Mrp3(+/+) and (−/−) [33] | Plasma, lung, brain, liver, gall bladder, kidney, urine bladder, stomach, stomach contents, small intestine, colon + cecum, and intestinal contents | [3H]Morphine | Liquid scintillation counting | N/A |
C57 (both sexes) [39] | Serum | Fentanyl | LC-MS/MS | LOQ: 2.0 ng/mL |
Male CF-1 mdr1a(+/+) [16] | Serum and brain | Fentanyl and Morphine | HPLC-MS/MS | Not stated |
C59BL/6J-Bom [40] | Blood and brain | Morphine, M3G, and M6G | Reversed-phased LC-MS/MS | Blood LOQ: 0.0012 (morphine) mg/L, 0.019 (M3G) mg/L, 0.0014 mg/L (M6G); Brain LOQ: 0.0036 μg/g (morphine), 0.059 μg/g (M3G), 0.004 μg/g (M6G) |
Male ICR [41] | Brain | Morphine, M3G, and M6G | UHPLC-MS/MS | LLOQ: 0.05 ng/mL (all analytes) |
Male Swiss Webster [42] | Serum and brain | Fentanyl | LC-MS | Not stated |
Male C57BL/6 mice [43] | Plasma, brain, urine, and liver | Morphine and M3G | LC-MS/MS | Plasma LOQ: 130.13 ± 39.93 fmol (morphine), 7.12 ± 0.98 (M3G) Brain LOQ: 10.02 ± 3.45 fmol (morphine), 8.32 ± 0.44 fmol (M3G) Liver LOQ: 92.13 ± 4.12 fmol (morphine), 6.19 ± 0.01 fmol (M3G) Urine LOQ: 2.02 ± 0.29 fmol (morphine), 5.44 ± 0.36 fmol (M3G) |
C57BL/6J [44] | Plasma, liver, and kidney | Morphine | [3H]Morphine | N/A |
Male C57BL/6 [45] | Plasma and liver | Morphine and M3G | UPLC-QTOF/MS | Not stated |
Male BALB/c [46] | Serum and brain | Fentanyl | GC-MS | Not stated |
Male Swiss Webster [47] | Plasma | Fentanyl | LC-MS/MS | LOD: 1.6 ng/mL |
Female BALB/c [48] | Blood and brain | Fentanyl | LC-MS/MS | LOQ: 0.25 ng/mL |
Wild-type FVB/NRj mice [31] | Plasma, brain, spleen, kidney, small intestine, and liver | Morphine, M3G, and M6G | UPLC-MS/MS | LLOQ: 1 ng/mL (morphine), 10 ng/mL (M3G), 0.5 ng/mL (M6G) (human plasma) |
Female BALB/c [49] | Serum and brain | Fentanyl | LC-MS/MS | Not stated |
Tissue | Analyte | tmax (min) | Cmax ± SD (ng/mL or ng/g) |
---|---|---|---|
Whole blood | Fentanyl | 15 | 47 ± 17 |
Norfentanyl | 60 | 6.63 ± 2.0 | |
4-ANPP | 5 | 1.12 ± 0.47 | |
Morphine | 15 | 17,825 ± 6628 | |
Morphine-3-β-D-glucuronide | 60 | 19,900 ± 2033 | |
Brain | Fentanyl | 15 | 158 ± 45 |
Norfentanyl | 5 | 9.9 ± 0.89 | |
4-ANPP | 60 | 11.4 ± 8.7 | |
Morphine | 60 | 1880 ± 478 | |
Morphine-3-β-D-glucuronide | 60 | 1561.5 ± 860 | |
Liver | Fentanyl | 15 | 19.1 ± 6.6 |
Norfentanyl | 60 | 21 ± 3.5 | |
4-ANPP | 60 | 2.7 ± 1.5 | |
Morphine | 15 | 1280 ± 297 | |
Morphine-3-β-D-glucuronide | 60 | 12,202.5 ± 5955 | |
Lung | Fentanyl | 15 | 398.5 ± 122 |
Norfentanyl | 60 | 14.5 ± 6.2 | |
4-ANPP | 60 | 2.5 ± 1.5 | |
Morphine | 15 | 38,200 ± 8055 | |
Morphine-3-β-D-glucuronide | 60 | 15,570 ± 2069 | |
Heart | Fentanyl | 15 | 202 ± 55 |
Norfentanyl | 240 | 21.1 ± 12 | |
4-ANPP | 15 | 10.6 ± 11 | |
Morphine | 5 | 782 ± 226 | |
Morphine-3-β-D-glucuronide | 60 | 5490 ± 168 | |
Kidney | Fentanyl | 15 | 413.5 ± 92 |
Norfentanyl | 60 | 33.9 ± 17 | |
4-ANPP | 240 | 21.1 ± 16 | |
Morphine | 60 | 59,390 ± 23,448 | |
Morpine-3-glucuronide | 60 | 203,900 ± 95,857 | |
Spleen | Fentanyl | 60 | 282.4 ± 40 |
Norfentanyl | 60 | 19.03 ± 6.0 | |
4-ANPP | N/A | N/A | |
Morphine | 15 | 30,588 ± 9099 | |
Morphine-3-β-D-glucuronide | 60 | 2623.2 ± 581 | |
Small Intestine | Fentanyl | 60 | 90.7 ± 31 |
Norfentanyl | 60 | 30.1 ± 7.6 | |
4-ANPP | N/A | N/A | |
Morphine | 60 | 14,170 ± 5194 | |
Morphine-3-β-D-glucuronide | 15 | 32,790 ± 20,371 | |
Large Intestine | Fentanyl | 60 | 88.9 ± 14 |
Norfentanyl | 240 | 40.5 ± 13 | |
4-ANPP | N/A | N/A | |
Morphine | 240 | 22,534 ± 24,290 | |
Morphine-3-β-D-glucuronide | N/A | N/A | |
Stomach | Fentanyl | 60 | 105.7 ± 13 |
Norfentanyl | 60 | 18.35 ± 5.9 | |
4-ANPP | N/A | N/A | |
Morphine | 60 | 20,350 ± 2423 | |
Morphine-3-β-D-glucuronide | 60 | 8835 ± 4521 | |
Muscle | Fentanyl | 15 | 30.8 ± 26 |
Norfentanyl | 60 | 31.1 ± 9.2 | |
4-ANPP | N/A | N/A | |
Morphine | 60 | 4362.5 ± 6258 | |
Morphine-3-β-D-glucuronide | 60 | 4335 ± 1110 | |
Fat | Fentanyl | 60 | 163.8 ± 36 |
Norfentanyl | 60 | 10.6 ± 0.69 | |
4-ANPP | N/A | N/A | |
Morphine | 60 | 2195 ± 1543 | |
Morphine-3-β-D-glucuronide | 60 | 1980 ± 1277 | |
Skin | Fentanyl | 60 | 95.5 ± 57 |
Norfentanyl | N/A | N/A | |
4-ANPP | N/A | N/A | |
Morphine | 5 | 64,075 ± 40,027 | |
Morpine-3-β-D-glucuronide | 60 | 16,900 ± 5243 |
Tissue–Blood Concentration Ratio | ||||||||
---|---|---|---|---|---|---|---|---|
Fentanyl | Morphine | |||||||
Tissue | 5 min | 15 min | 60 min | 240 min | 5 min | 15 min | 60 min | 240 min |
Brain | 3.0 ± 0.39 | 3.5 ± 0.74 | 3.4 ± 0.71 | 3.6 ± 0.31 | 0.093 ± 0.018 | 0.084 ± 0.037 | 0.37 ± 0.092 | 5.5 ± 3.1 |
Liver | 0.37 ± 0.16 | 0.41 ± 0.06 | 0.57 ± 0.24 | 0.82 ± 0.18 | 0.073 ± 0.005 | 0.076 ± 0.022 | 0.23 ± 0.097 | 2.1 ± 0.172 |
Lung | 3.0 ± 0.92 | 9.2 ± 3.4 | 9.9 ± 2.2 | 9.3 ± 2.6 | 0.78 ± 0.21 | 2.4 ± 0.91 | 2.0 ± 0.75 | 4.7 ± 3.4 |
Heart | 3.9 ± 1.2 | 4.6 ± 1.5 | 4.9 ± 0.51 | 12 ± 5.1 | 0.083 ± 0.024 | 0.049 ± 0.047 | 0.058 ± 0.023 | 3.4 ± 4.2 |
Kidney | 5.2 ± 2.0 | 10 ± 5.4 | 18 ± 1.5 | 18 ± 1.6 | 2.9 ± 0.15 | 3.0 ± 0.86 | 11 ± 1.8 | 14 ± 6.0 |
Spleen | 1.3 ± 0.25 | 3.6 ± 0.94 | 17 ± 3.8 | 14 ± 0.90 | 1.2 ± 0.26 | 1.8 ± 0.28 | 4.5 ± 0.96 | 6.8 ± 5.3 |
Small intestine | 1.2 ± 0.15 | 1.9 ± 0.74 | 5.4 ± 1.8 | 10 ± 2.4 | 0.65 ± 0.10 | 0.74 ± 0.26 | 2.8 ± 1.0 | 9.0 ± 3.1 |
Large intestine | 0.73 ± 0.27 | 1.2 ± 0.45 | 5.4 ± 2.0 | 11 ± 7.4 | 0.33 ± 0.028 | 0.41 ± 0.18 | 3.0 ± 1.1 | 295 ± 326 |
Stomach | 0.73 ± 0.27 | 1.7 ± 0.48 | 6.3 ± 1.4 | 23 ± 11 | 0.48 ± 0.056 | 0.88 ± 0.13 | 4.1 ± 1.1 | 40 ± 17 |
Muscle 1 | 0.21 ± 0.16 | 0.67 ± 0.64 | 0.29 ± 0.07 | 1.4 ± 0.61 | — | 0.065 ± 0.031 | 0.59 ± 0.62 | — |
Fat | 0.43 ± 0.04 | 1.1 ± 0.36 | 10 ± 4.0 | 39 ± 9.6 | 0.057 ± 0.008 | 0.089 ± 0.051 | 0.45 ± 0.35 | 5.4 ± 6.9 |
Skin | 2.6 ± 3.4 | 2.3 ± 1.4 | 5.2 ± 2.9 | 10 ± 3.8 | 7.6 ± 6.1 | 3.8 ± 3.0 | 4.2 ± 3.9 | 6.1 ± 3.4 |
AUC Tissue–Blood Ratio | ||||||||
---|---|---|---|---|---|---|---|---|
Fentanyl | Morphine | |||||||
Tissue | Subject #1 | Subject #2 | Subject #3 | Subject #4 | Subject #1 | Subject #2 | Subject #3 | Subject #4 |
Brain | 3.1 | 3.1 | 3.5 | 3.7 | 0.26 | 0.22 | 0.23 | 0.34 |
Liver | 0.48 | 0.39 | 0.52 | 0.64 | 0.22 | 0.088 | 0.15 | 0.21 |
Lung | 7.3 | 7.5 | 12 | 9 | 2.6 | 1.6 | 2.1 | 2.1 |
Heart | 3.7 | 5.3 | 6.1 | 5.2 | 0.088 | 0.036 | 0.056 | 0.16 |
Kidney | 12 | 14 | 14 | 16 | 7.0 | 6.8 | 8.3 | 6.6 |
Spleen | 8 | 9 | 13 | 13 | 3.2 | 2.5 | 3.4 | 3.3 |
Small intestine | 2.4 | 3.5 | 5.6 | 5.1 | 2.7 | 1.5 | 1.2 | 1.9 |
Large intestine | 3.4 | 2.8 | 3.8 | 5.0 | 2.4 | 3.8 | 3.3 | 2.9 |
Stomach | 3.9 | 4.8 | 6.3 | 6.0 | 2.9 | 1.9 | 2.8 | 3.3 |
Muscle | 0.33 | 0.14 | 0.76 | 0.35 | 0.29 | 0.86 | 0.12 | 0.12 |
Fat | 6.5 | 6.3 | 6.9 | 11 | 0.61 | 0.14 | 0.26 | 0.22 |
Skin | 3.6 | 5.7 | 4.7 | 3.0 | 3.0 | 2.1 | 5.8 | 5.5 |
AUC Tissue–Blood Ratio | ||
---|---|---|
Tissue | Fentanyl | Morphine |
Brain | 3.3 ± 0.30 | 0.26 ± 0.054 |
Liver | 0.51 ± 0.10 | 0.17 ± 0.060 |
Lung | 9.0 ± 2.2 | 2.1 ± 0.41 |
Heart | 5.1 ± 1.0 | 0.087 ± 0.053 |
Kidney | 14 ± 1.6 | 7.1 ± 0.62 |
Spleen | 11 ± 2.6 | 3.1 ± 0.41 |
Small intestine | 4.2 ± 1.5 | 1.8 ± 0.65 |
Large intestine | 3.7 ± 0.92 | 3.1 ± 0.67 |
Stomach | 5.2 ± 1.0 | 2.8 ± 0.60 |
Muscle | 0.39 ± 0.26 | 0.36 ± 0.37 |
Fat | 7.5 ± 2.4 | 0.31 ± 0.21 |
Skin | 4.3 ± 1.2 | 4.1 ± 1.8 |
Tissue | Difference in Concentration Ratio (Tissue AUC–Blood AUC) |
---|---|
Brain | Fentanyl > Morphine (p < 0.0001) |
Liver | Fentanyl > Morphine (p = 0.0013) |
Lung | Fentanyl > Morphine (p = 0.0008) |
Heart | Fentanyl > Morphine (p < 0.0001) |
Kidney | Fentanyl > Morphine (p = 0.0002) |
Spleen | Fentanyl > Morphine (p = 0.0012) |
Small intestine | Fentanyl > Morphine (p = 0.0276) |
Large intestine | No significant difference (p = 0.2833) |
Stomach | Fentanyl > Morphine (p = 0.0064) |
Muscle | No significant difference (p = 0.8740) 1 |
Fat | Fentanyl > Morphine (p = 0.0009) |
Skin | No significant difference (p = 0.8954) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodson, R.; Poklis, J.; Elder, H.J.; Walentiny, D.M.; Dewey, W.; Halquist, M. Acute Biodistribution Comparison of Fentanyl and Morphine. Psychoactives 2024, 3, 437-460. https://doi.org/10.3390/psychoactives3040027
Goodson R, Poklis J, Elder HJ, Walentiny DM, Dewey W, Halquist M. Acute Biodistribution Comparison of Fentanyl and Morphine. Psychoactives. 2024; 3(4):437-460. https://doi.org/10.3390/psychoactives3040027
Chicago/Turabian StyleGoodson, Rosamond, Justin Poklis, Harrison J. Elder, D. Matthew Walentiny, William Dewey, and Matthew Halquist. 2024. "Acute Biodistribution Comparison of Fentanyl and Morphine" Psychoactives 3, no. 4: 437-460. https://doi.org/10.3390/psychoactives3040027
APA StyleGoodson, R., Poklis, J., Elder, H. J., Walentiny, D. M., Dewey, W., & Halquist, M. (2024). Acute Biodistribution Comparison of Fentanyl and Morphine. Psychoactives, 3(4), 437-460. https://doi.org/10.3390/psychoactives3040027