Comparative Analysis of Cycloplegic and Non-Cycloplegic Refraction in Children and Adolescents: Implications for Accurate Assessment of Refractive Errors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Refraction Protocol and Visual Acuity Assessment
2.3. Cycloplegia Protocol
2.4. Definition of Refractive Status
2.5. Statistical Analysis and Data Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magome, K.; Morishige, N.; Ueno, A.; Matsui, T.A.; Uchio, E. Prediction of cycloplegic refraction for noninvasive screening of children for refractive error. PLoS ONE 2021, 16, e0248494. [Google Scholar] [CrossRef] [PubMed]
- Major, E.; Dutson, T.; Moshirfar, M. Cycloplegia in Children: An Optometrist’s Perspective. Clin. Optom. 2020, 12, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P.; He, X.; Naduvilath, T.; Lv, M.; Ho, A.; Smith, E.; Erickson, P.; Zhu, J.; Zou, H.; Xu, X. Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmol. 2017, 95, e633–e640. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Iribarren, R.; Fotouhi, A.; Grzybowski, A. Cycloplegic refraction is the gold standard for epidemiological studies. Acta Ophthalmol. 2015, 93, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D. Administration of and adverse reactions to cycloplegic agents. Am. J. Optom. Physiol. Opt. 1978, 55, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Royal College of Ophthalmologists. Guidelines for the Management of Strabismus in Childhood. Available online: https://www.rcophth.ac.uk/standards-publications-research/clinical-guidelines/ (accessed on 25 February 2024).
- College of Optometrists. Examining Younger Children. Available online: https://www.college-optometrists.org/clinical-guidance/guidance/knowledge,-skills-and-performance/examining-younger-children (accessed on 25 February 2024).
- Morgan, I.G.; Wu, P.C.; Ostrin, L.A.; Tideman, J.W.L.; Yam, J.C.; Lan, W.; Baraas, R.C.; He, X.; Sankaridurg, P.; Saw, S.-M.; et al. IMI Risk Factors for Myopia. Investig. Ophthalmol. Vis. Sci. 2021, 62, 3. [Google Scholar] [CrossRef] [PubMed]
- Varošanec, A.M.; Marković, L.; Sonicki, Z. The CroMyop study: Myopia progression in Croatian children and adolescents-a 15-year retrospective analysis. Front. Med. 2024, 11, 1405743. [Google Scholar] [CrossRef] [PubMed]
- Twelker, J.D.; Mutti, D.O. Retinoscopy in infants using a near noncycloplegic technique, cycloplegia with tropicamide 1%, and cycloplegia with cyclopentolate 1%. Optom. Vis. Sci. 2001, 78, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Ctori, I.; Shah, R.; Suttle, C.; Conway, M.L. Systematic review and meta-analysis on the agreement of non-cycloplegic and cycloplegic refraction in children. Ophthalmic Physiol. Opt. 2022, 42, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, L.; Näsänen, R.; Laurinen, P. New visual acuity test for pre-school children. Acta Ophthalmol. 1980, 58, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Feldman, J. Use of tropicamide in routine cycloplegic refraction. Am. J. Optom. Physiol. Opt. 1979, 56, 813–817. [Google Scholar]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI–defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Kollbaum, P.S.; Berntsen, D.A.; Atchison, D.A.; Benavente, A.; Bradley, A.; Buckhurst, H.; Collins, M.; Fujikado, T.; Hiraoka, T.; et al. IMI—Clinical Myopia Control Trials and Instrumentation Report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M132–M160. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Chang, D.S.; Wu, P.C. The Association between Near Work Activities and Myopia in Children—A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0140419. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008, 115, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; He, M.; Morgan, I.G. The impact of parental myopia on myopia in Chinese children: Population-based evidence. Optom. Vis. Sci. 2012, 89, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Dirani, M.; Tong, L.; Gazzard, G.; Zhang, X.; Chia, A.; Young, T.L.; Rose, K.A.; Mitchell, P.; Saw, S.-M. Outdoor activity and myopia in Singapore teenage children. Br. J. Ophthalmol. 2009, 93, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, C.; Chen, Y.; He, M. Myopia prediction: A systematic review. Eye 2022, 36, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Jones, L.A.; Moeschberger, M.L.; Zadnik, K. Accommodative lag and the development of myopia in children. Optom. Vis. Sci. 2003, 80, 378–383. [Google Scholar]
- Gwiazda, J.; Hyman, L.; Hussein, M.; Everett, D.; Norton, T.T.; Kurtz, D.; Leske, M.C.; Manny, R.; Marsh-Tootle, W.; Scheiman, M.; et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mao, J.; Luo, R.; Li, F.; Pokharel, G.P.; Ellwein, L.B. Accuracy of noncycloplegic autorefraction in school-age children. Am. J. Ophthalmol. 2002, 134, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Varošanec, A.M.; Marković, L.; Sonicki, Z. A Novel Time-Aware Deep Learning Model Predicting Myopia in Children and Adolescents. Ophthalmol. Sci. 2024, 4, 100563. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ma, W.; Li, R.; Zhao, N.; Zhou, T. Myopia prediction for children and adolescents via time-aware deep learning. Sci. Rep. 2023, 13, 5430. [Google Scholar] [CrossRef] [PubMed]
n | Gender (Female, %) | Age of Diagnosis (Mean ± SD, y) | ||
---|---|---|---|---|
Premyopia | NCR Group | 17 | 71.2 | 9.41 ± 2.56 |
CR Group | 51 | 60.8 | 11.37 ± 3.59 | |
Low myopia | NCR Group | 156 | 58.2 | 12.46 ± 3.15 |
CR Group | 813 | 58.7 | 11.18 ± 3.53 | |
High myopia | NCR Group | 7 | 31.6 | 13.02 ± 3.55 |
CR Group | 31 | 48.4 | 11.44 ± 4.35 |
n | Gender (Female, %) | Age of Diagnosis (Mean ± SD, y) | First Visit Cycloplegic SE (Mean ± SD, D) | Cycloplegic SE 11–24 Months Progression Rate (Mean ± SD, D/y) | |
---|---|---|---|---|---|
Premyopia | 17 | 68.1 | 11.37 ± 3.59 | −0.11± 0.1 | −0.36 ± 0.25 |
Low myopia | 156 | 57.3 | 11.18 ± 3.53 | −1.53 ± 0.96 | −0.15 ± 0.12 |
High myopia | 7 | 36.2 | 11.44 ± 4.35 | −7.61 ± 1.89 | −0.25 ± 0.19 |
Follow-Up Period (Mean ± SD, Years) | First Visit Correction SE (Mean ± SD, D) | Correction SE 11–24 Months Progression Rate (Mean ± SD, D/y) | UCVA (Decimal) | BCVA (Decimal) | |
---|---|---|---|---|---|
Premyopia (NCR Group) | 5.04 ± 3.08 | −0.05 ± 0.2 | −0.37 ± 0.21 | 0.91 ± 0.10 | 0.95 ± 0.04 |
Premyopia (rCR Group) | 3.45 ± 1.20 | −0.04 ± 0.16 | −0.38 ± 0.23 | 0.89 ± 0.10 | 0.94 ± 0.05 |
p-value, 95% CI | * <0.001, −1.49 to −0.09 | 0.46, −0.93 to 0.42 | 0.64, −0.81 to 0.53 | 0.52, −0.04 to 0.08 | 0.41, −0.01 to 0.03 |
Low myopia (NCR Group) | 3.87 ± 1.54 | −1.86 ± 1.01 | −0.29 ± 0.24 | 0.55 ± 0.15 | 0.95 ± 0.03 |
Low myopia (rCR Group) | 3.41 ± 1.12 | −1.35 ± 1.03 | −0.19 ± 0.21 | 0.59 ± 0.12 | 0.97 ± 0.02 |
p-value, 95% CI | 0.56, −0.84 to −0.39 | * <0.001, 0.25 to 0.71 | * 0.01, −0.20 to 0.24 | 0.56, −0.08 to 0.11 | 0.60, −0.05 to 0.08 |
High myopia (NCR Group) | 5.08 ± 3.55 | −7.32 ± 1.71 | 0.51 ± 0.14 | 0.30 ± 0.22 | 0.90 ± 0.05 |
High myopia (rCR Group) | 2.08 ± 1.15 | −6.34 ± 1.56 | 0.40 ± 0.25 | 0.38 ± 0.20 | 0.91 ± 0.06 |
p-value, 95% CI | * 0.03, −2.39 to −0.07 | 0.28, −0.48 to 1.66 | 0.19, −1.82 to 0.36 | 0.43, −0.27 to 0.11 | 0.62, −0.04 to 0.06 |
Age (Years) | |||||||
---|---|---|---|---|---|---|---|
4–6 | 7–9 | 10–12 | 13–15 | 16–18 | |||
NCR Group | Progression Rate | n | 17 | 25 | 62 | 43 | 33 |
Mean (D/y) | −0.61 | −0.42 | −0.28 | −0.13 | −0.21 | ||
SD | 1.05 | 0.33 | 0.24 | 0.18 | 0.30 | ||
rCR Group | Progression Rate | n | 17 | 25 | 62 | 43 | 33 |
Mean (D/y) | −0.40 | −0.34 | −0.19 | −0.14 | −0.10 | ||
SD | 0.42 | 0.41 | 0.27 | 0.29 | 0.22 | ||
p-value | * 0.05 | 0.44 | 0.24 | 0.55 | 0.08 | ||
95% CI | −0.22 to 0.14 | −0.25 to 0.11 | −0.01 to 0.10 | −0.01 to 0.03 | −0.02 to 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varošanec, A.M.; Marković, L.; Sonicki, Z. Comparative Analysis of Cycloplegic and Non-Cycloplegic Refraction in Children and Adolescents: Implications for Accurate Assessment of Refractive Errors. J. Clin. Transl. Ophthalmol. 2025, 3, 13. https://doi.org/10.3390/jcto3030013
Varošanec AM, Marković L, Sonicki Z. Comparative Analysis of Cycloplegic and Non-Cycloplegic Refraction in Children and Adolescents: Implications for Accurate Assessment of Refractive Errors. Journal of Clinical & Translational Ophthalmology. 2025; 3(3):13. https://doi.org/10.3390/jcto3030013
Chicago/Turabian StyleVarošanec, Ana Maria, Leon Marković, and Zdenko Sonicki. 2025. "Comparative Analysis of Cycloplegic and Non-Cycloplegic Refraction in Children and Adolescents: Implications for Accurate Assessment of Refractive Errors" Journal of Clinical & Translational Ophthalmology 3, no. 3: 13. https://doi.org/10.3390/jcto3030013
APA StyleVarošanec, A. M., Marković, L., & Sonicki, Z. (2025). Comparative Analysis of Cycloplegic and Non-Cycloplegic Refraction in Children and Adolescents: Implications for Accurate Assessment of Refractive Errors. Journal of Clinical & Translational Ophthalmology, 3(3), 13. https://doi.org/10.3390/jcto3030013