Modification of Recovered Silicon from End-of-Life Photovoltaic Panels for Catalytic Reduction of Cr(VI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silicon Recovery
2.3. Silicon Modifications
2.4. Characterization
2.5. Photocatalytic Experiments
3. Results
3.1. Morphology after Cleaning
3.2. Morphology after Modification
3.3. Hexavalent Chromium Reduction
- Solar irradiation;
- 5 mM citric acid;
- A combination of both.
4. Discussion
- Lowers the pH increasing Cr(III) species solubility;
- Forms a soluble complex with Cr(III), preventing active site occupation;
- Acts as a sacrificial agent under irradiation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IRENA; IEA-PVPS. End-of-Life Management: Solar Photovoltaic Panels; National Renewable Energy Lab.: Golden, CO, USA, 2016. [Google Scholar]
- Masoumian, M.; Kopacek, P. End-of-Life Management of Photovoltaic Modules. IFAC-Pap. 2015, 48, 162–167. [Google Scholar] [CrossRef]
- Savvilotidou, V.; Antoniou, A.; Gidarakos, E. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Manag. 2017, 59, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Buitrago, E.; Novello, A.M.; Meyer, T. Third-Generation Solar Cells: Toxicity and Risk of Exposure. HCA 2020, 103, e2000074. [Google Scholar] [CrossRef]
- Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [Google Scholar] [CrossRef]
- Granata, G.; Pagnanelli, F.; Moscardini, E.; Havlik, T.; Toro, L. Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells 2014, 123, 239–248. [Google Scholar] [CrossRef]
- Theocharis, M.; Pavlopoulos, C.; Kousi, P.; Hatzikioseyian, A.; Zarkadas, I.; Tsakiridis, P.E.; Remoundaki, E.; Zoumboulakis, L.; Lyberatos, G. An Integrated Thermal and Hydrometallurgical Process for the Recovery of Silicon and Silver From End-of-life Crystalline Si Photovoltaic Panels. Waste Biomass-Valorization 2022, 13, 4027–4041. [Google Scholar] [CrossRef]
- Theocharis, M.; Tsakiridis, P.E.; Kousi, P.; Hatzikioseyian, A.; Zarkadas, I.; Remoundaki, E.; Lyberatos, G. Hydrometallurgical Treatment for the Extraction and Separation of Indium and Gallium from End-of-Life CIGS Photovoltaic Panels. Mater. Proc. 2021, 5, 51. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- Duflou, J.R.; Peeters, J.R.; Altamirano, D.; Bracquene, E.; Dewulf, W. Demanufacturing photovoltaic panels: Comparison of end-of-life treatment strategies for improved resource recovery. CIRP Ann. 2018, 67, 29–32. [Google Scholar] [CrossRef]
- Pavlopoulos, C.; Kelesi, M.; Michopoulos, D.; Papadopoulou, K.; Lymperopoulou, T.; Skaropoulou, A.; Tsivilis, S.; Lyberatos, G. Management of end–of–life photovoltaic panels based on stabilization using Portland cement. Sustain. Chem. Pharm. 2022, 27, 100687. [Google Scholar] [CrossRef]
- Liu, D.; Ma, J.; Long, R.; Gao, C.; Xiong, Y. Silicon nanostructures for solar-driven catalytic applications. Nano Today 2017, 17, 96–116. [Google Scholar] [CrossRef]
- Srivastava, S.; Kumar, D.; Schmitt, S.W.; Sood, K.; Christiansen, S.; Singh, P. Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Nanotechnology 2014, 25, 175601. [Google Scholar] [CrossRef] [PubMed]
- Chiou, A.H.; Chien, T.; Su, C.K.; Lin, J.F.; Hsu, C.Y. The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching. Curr. Appl. Phys. 2013, 13, 717–724. [Google Scholar] [CrossRef]
- Salhi, B.; Hossain, M.K.; Al-Sulaiman, F. Wet-chemically etched silicon nanowire: Effect of etching parameters on the morphology and optical characterizations. Sol. Energy 2018, 161, 180–186. [Google Scholar] [CrossRef]
- Naama, S.; Hadjersi, T.; Menari, H.; Nezzal, G.; Ahmed, L.B.; Lamrani, S. Enhancement of the tartrazine photodegradation by modification of silicon nanowires with metal nanoparticles. Mater. Res. Bull. 2016, 76, 317–326. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Vuong, V.C.; Nguyen, D.L. Mechanism of the photocatalytic activity of p-Si(100)/n-ZnO nanorods heterojunction. Mater. Chem. Phys. 2018, 204, 397–402. [Google Scholar] [CrossRef]
- Brahiti, N.; Hadjersi, T.; Amirouche, S.; Menari, H.; El Kechai, O. Photocatalytic degradation of cationic and anionic dyes in water using hydrogen-terminated silicon nanowires as catalyst. Int. J. Hydrogen Energy 2018, 43, 11411–11421. [Google Scholar] [CrossRef]
- Fellahi, O.; Barras, A.; Pan, G.; Coffinier, Y.; Hadjersi, T.; Maamache, M.; Szunerits, S.; Boukherroub, R. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation. J. Hazard. Mater. 2016, 304, 441–447. [Google Scholar] [CrossRef]
- Xia, S.; Jeyakumar, P.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [Google Scholar] [CrossRef]
- Wu, S.L.; Zhang, T.; Zheng, R.T.; Cheng, G.A. Facile morphological control of single-crystalline silicon nanowires. Appl. Surf. Sci. 2012, 258, 9792–9799. [Google Scholar] [CrossRef]
- Remoundaki, E.; Hatzikioseyian, A.; Tsezos, M. A systematic study of chromium solubility in the presence of organic matter: Consequences for the treatment of chromium-containing wastewater. J. Chem. Technol. Biotechnol. 2007, 82, 802–808. [Google Scholar] [CrossRef]
- Hongbo, H.; Zhuangzhu, L.; Changlin, Y. Water-soluble natural organic acid for highly efficient photoreduction of hexavalent chromium. J. Chem. Sci. 2020, 132, 113. [Google Scholar] [CrossRef]
- Ngo, A.; Nguyen, H.; Hollmann, D. Critical Assessment of the Photocatalytic Reduction of Cr(VI) over Au/TiO2. Catalysts 2018, 8, 606. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, V.; Salou, C.; Meichtry, J.; Colbeau-Justin, C.; Litter, M. Role of Cr(iii) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples. Photochem. Photobiol. Sci. 2016, 15, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Li, L.; Yingying, X.; Yuening, Y.; Alok, D.B.; Chii, S. Enhanced photocatalytic reduction of chromium (VI) by Cu-doped TiO2 under UV-A irradiation. Sep. Purif. Technol. 2018, 190, 53–59. [Google Scholar] [CrossRef]
- Guping, Z.; Dongyun, C.; Najun, L.; Qingfeng, X.; Hua, L.; Jinghui, H.; Jianmei, L. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Appl. Catal. B Environ. 2018, 232, 164–174. [Google Scholar] [CrossRef]
- Hongbo, H.; Zhuangzhu, L.; Zhen-Yu, T.; Changlin, Y. Controllable construction of ZnWO4 nanostructure with enhanced performance for photosensitized Cr(VI) reduction. Appl. Surf. Sci. 2019, 490, 460–468. [Google Scholar] [CrossRef]
- Hongbo, H.; Jiade, L.; Changlin, Y.; Zhuangzhu, L. Surface decoration of microdisk-like g-C3N4/diatomite with Ag/AgCl nanoparticles for application in Cr(VI) reduction. Sustain. Mater. Technol. 2019, 22, e00127. [Google Scholar] [CrossRef]
Catalyst | Catalyst Concentration (g/L) | Light Source | Volume (mL) | Cr(VI) C0 (mg/L) | k (min−1) | Reference |
---|---|---|---|---|---|---|
PV SiNWs/Ag/Cu | 1.2 | 150 W Xe | 600 | 15 | 0.4427 | Current study |
Dark | 0.1689 | |||||
TiO2 | 1 | 3 × 6 W Black Light | 50 | 10 | 0.0049 | 27 |
TiO2/Cu | 0.0093 | |||||
CdS | 1 | 300 W Xe | 50 | 50 | 0.0245 | 28 |
ZnIn2S4 | 0.0562 | |||||
ZIS/Cds-0.33 | 0.1790 | |||||
ZnWO4 | 1 | 400 W metal halide | 50 | 20 | 0.0085 | 29 |
ZnWO4/MB | 0.0769 | |||||
g-C3N4/DE | 1.67 | 400 W metal halide | 30 | 20 | 0.0016 | 30 |
g-C3N4/DE/Ag/AgCl | 0.0740 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlopoulos, C.; Papadopoulou, K.; Theocharis, M.; Tsakiridis, P.; Kousi, P.; Hatzikioseyian, A.; Remoundaki, E.; Lyberatos, G. Modification of Recovered Silicon from End-of-Life Photovoltaic Panels for Catalytic Reduction of Cr(VI). Waste 2023, 1, 81-94. https://doi.org/10.3390/waste1010006
Pavlopoulos C, Papadopoulou K, Theocharis M, Tsakiridis P, Kousi P, Hatzikioseyian A, Remoundaki E, Lyberatos G. Modification of Recovered Silicon from End-of-Life Photovoltaic Panels for Catalytic Reduction of Cr(VI). Waste. 2023; 1(1):81-94. https://doi.org/10.3390/waste1010006
Chicago/Turabian StylePavlopoulos, Charalampos, Konstantina Papadopoulou, Minas Theocharis, Petros Tsakiridis, Pavlina Kousi, Artin Hatzikioseyian, Emmanouella Remoundaki, and Gerasimos Lyberatos. 2023. "Modification of Recovered Silicon from End-of-Life Photovoltaic Panels for Catalytic Reduction of Cr(VI)" Waste 1, no. 1: 81-94. https://doi.org/10.3390/waste1010006
APA StylePavlopoulos, C., Papadopoulou, K., Theocharis, M., Tsakiridis, P., Kousi, P., Hatzikioseyian, A., Remoundaki, E., & Lyberatos, G. (2023). Modification of Recovered Silicon from End-of-Life Photovoltaic Panels for Catalytic Reduction of Cr(VI). Waste, 1(1), 81-94. https://doi.org/10.3390/waste1010006