Quantum–Classical Mechanics and the Franck–Condon Principle †
Abstract
:1. Introduction
2. Quantum–Classical Mechanics of Elementary Electron Transfers in Condensed Media
3. Shape of the Optical Absorption Band and Egorov Nano-Resonance (Enr)
4. From Quantum–Classical Mechanics to Quantum Mechanics
5. Extent of Quantum–Classical Transitions as a Measure of Dozy Chaos
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, Non-Relativistic Theory, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Born, M.; Oppenheimer, J.R. Quantum theory of the molecules. Ann. Phys. 1927, 84, 457–484. [Google Scholar] [CrossRef]
- Perlin, Y.E. Modern methods in the theory of many-phonon processes. Sov. Phys. Uspekhi 1964, 6, 542–565. [Google Scholar] [CrossRef]
- Frank-Kamenetskii, M.D.; Lukashin, A.V. Electron-vibrational interactions in polyatomic molecules. Sov. Phys. Uspekhi 1975, 18, 391–409. [Google Scholar] [CrossRef]
- Bersuker, I.B.; Polinger, V.Z. Vibronic Interactions in Molecules and Crystals; Springer: New York, NY, USA, 1989. [Google Scholar]
- Stanke, M. Adiabatic, Born-Oppenheimer, and non-adiabatic approaches. In Handbook of Computational Chemistry; Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., Papadopoulos, M.G., Reis, H., Shukla, M.K., Eds.; Springer: Cham, Switzerland, 2017; pp. 173–223. [Google Scholar]
- Franck, J.; Dymond, E.G. Elementary processes of photochemical reactions. Trans. Faraday Soc. 1925, 21, 536–542. [Google Scholar] [CrossRef]
- Condon, E.U. A theory of intensity distribution in band systems. Phys. Rev. 1926, 28, 1182–1201. [Google Scholar] [CrossRef]
- Condon, E.U. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev. 1928, 32, 858–872. [Google Scholar] [CrossRef]
- Condon, E.U. The Franck-Condon principle and related topics. Am. J. Phys. 1947, 15, 365–374. [Google Scholar] [CrossRef]
- Davydov, A.S. Quantum Mechanics; Pergamon Press: Oxford, UK, 1976. [Google Scholar]
- Herzberg, G.; Spinks, J.W.T. Molecular Spectra and Molecular Structure. 1. Spectra of Diatomic Molecules; Prentice-Hall: New York, NY, USA, 1939. [Google Scholar]
- Herzberg, G. Molecular Spectra and Molecular Structure. 2. Infrared and Raman Spectra; D. Van Nostrand: Princeton, NJ, USA, 1945. [Google Scholar]
- Herzberg, G. Molecular Spectra and Molecular Structure. 3. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Nostrand Reinhold: New York, NY, USA; London, UK,, 1966. [Google Scholar]
- Jelley, E.E. Spectral absorption and fluorescence of dyes in the molecular state. Nature 1936, 138, 1009–1010. [Google Scholar] [CrossRef]
- Jelley, E.E. Molecular, nematic and crystal states of 1:1′-diethyl-ψ-cyanine chloride. Nature 1937, 139, 631–632. [Google Scholar] [CrossRef]
- Scheibe, G. Variability of the absorption spectra of some sensitizing dyes and its cause. Angew. Chem. 1936, 49, 563. [Google Scholar]
- Scheibe, G. On the variability of the absorption spectra in solutions and the secondary bonds as its cause. Angew. Chem. 1937, 50, 212–219. [Google Scholar] [CrossRef]
- Herz, A.H. Aggregation of sensitizing dyes in solution and their adsorption onto silver halides. Adv. Colloid Interface Sci. 1977, 8, 237–298. [Google Scholar] [CrossRef]
- James, T.H. (Ed.) The Theory of the Photographic Process; Macmillan: New York, NY, USA, 1977. [Google Scholar]
- Kobayashi, T. (Ed.) J-Aggregates; World Scientific: Singapore, 1996. [Google Scholar]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From serendipitous discovery to supra-molecular engineering of functional dye materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Aviv, H.; Tischler, Y.R. Synthesis and characterization of a J-aggregating TDBC derivative in solution and in Langmuir-Blodgett films. J. Lumin. 2015, 158, 376–383. [Google Scholar] [CrossRef]
- Bricks, J.L.; Slominskii, Y.L.; Panas, I.D.; Demchenko, A.P. Fluorescent J-aggregates of cyanine dyes: Basic research and applications review. Methods Appl. Fluoresc. 2018, 6, 012001. [Google Scholar] [CrossRef]
- Petrenko, A.; Stein, M. Toward a molecular reorganization energy-based analysis of third-order nonlinear optical properties of polymethine dyes and J-aggregates. J. Phys. Chem. A 2019, 123, 9321–9327. [Google Scholar] [CrossRef]
- Egorov, V.V.; Thomas, S. Quantum-classical mechanics: On the problem of a two-photon resonance band shape in polymethine dyes. Nano-Struct. Nano-Objects 2021, 25, 100650. [Google Scholar] [CrossRef]
- Egorov, V.V. Quantum–classical mechanics: Nano-resonance in polymethine dyes. Mathematics 2022, 10, 1443. [Google Scholar] [CrossRef]
- Egorov, V.V.; Alfimov, M.V. Theory of the J-band: From the Frenkel exciton to charge transfer. Phys. Uspekhi 2007, 50, 985–1029. [Google Scholar] [CrossRef]
- Egorov, V.V. Theory of the J-band: From the Frenkel exciton to charge transfer. Phys. Procedia 2009, 2, 223–326. [Google Scholar] [CrossRef]
- Egorov, V.V. Electron-transfer approach to the nature of the optical lineshape for molecular J-aggregates. Chem. Phys. Lett. 2001, 336, 284–291. [Google Scholar] [CrossRef]
- Egorov, V.V. On electrodynamics of extended multiphonon transitions and nature of the J-band. Chem. Phys. 2001, 269, 251–283. [Google Scholar] [CrossRef]
- Egorov, V.V. Nature of the optical transition in polymethine dyes and J-aggregates. J. Chem. Phys. 2002, 116, 3090–3103. [Google Scholar] [CrossRef]
- Egorov, V.V. Nature of the optical band shapes in polymethine dyes and H-aggregates: Dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates. R. Soc. Open Sci. 2017, 4, 160550. [Google Scholar] [CrossRef] [PubMed]
- Egorov, V.V. Quantum-classical mechanics: Luminescence spectra in polymethine dyes and J-aggregates. Nature of the small Stokes shift. Results Phys. 2019, 13, 102252. [Google Scholar] [CrossRef]
- Egorov, V.V. Quantum-classical mechanics as an alternative to quantum mechanics in molecular and chemical physics. Heliyon Phys. 2019, 5, e02579. [Google Scholar] [CrossRef]
- Pekar, S.I. Theory of F-centers. Zh. Eksp. Teor. Fiz. 1950, 20, 510–522. (In Russian) [Google Scholar]
- Pekar, S.I. To the theory of luminescence and light absorption by impurities in dielectrics. Zh. Eksp. Teor. Fiz. 1952, 22, 641–657. (In Russian) [Google Scholar]
- Pekar, S.I. On the effect of lattice deformations by electrons on optical and electrical properties of crystals. Uspekhi Fiz. Nauk 1953, 50, 197–252. (In Russian) [Google Scholar] [CrossRef]
- Krivoglaz, M.A.; Pekar, S.I. The shape of the spectra of the impurity light absorption and luminescence in dielectrics. Tr. Inst. Fiz. Akad. Nauk UKR SSR 1953, 4, 37–70. (In Russian) [Google Scholar]
- Egorov, V.V. Optical lineshapes for dimers of polymethine dyes: Dozy-chaos theory of quantum transitions and Frenkel exciton effect. RSC Adv. 2013, 3, 4598–4609. [Google Scholar] [CrossRef]
- Egorov, V.V. Discovery of Dozy Chaos and Discovery of Quanta: Analogy Being in Science and Perhaps in Human Progress. In Chaos and Complex Systems, Proceedings of the 4th International Interdisciplinary Chaos Symposium, Antalya, Turkey, 29 April–2 May 2012; Stavrinides, S.G., Banerjee, S., Caglar, H., Ozer, M., Eds.; Springer: Berlin, Germany, 2013; pp. 41–46. [Google Scholar]
- Egorov, V.V. Dozy Chaos in Chemistry: Simplicity in Complexity. In Chaos and Complex Systems, Proceedings of the 4th International Interdisciplinary Chaos Symposium, Antalya, Turkey, 29 April–2 May 2012; Stavrinides, S.G., Banerjee, S., Caglar, H., Ozer, M., Eds.; Springer: Berlin, Germany, 2013; pp. 219–224. [Google Scholar]
- Egorov, V.V. Dozy-chaos mechanics for a broad audience. Challenges 2020, 11, 16. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1927, 114, 243–265. [Google Scholar]
- Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 1932, 4, 87–132. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Planck, M. On the law of distribution of energy in the normal spectrum. Ann. Phys. 1901, 309, 553–563. [Google Scholar] [CrossRef]
- Egorov, V.V. Dynamic symmetry in dozy-chaos mechanics. Symmetry 2020, 12, 1856. [Google Scholar] [CrossRef]
- Egorov, V.V. Dynamic symmetry in dozy-chaos mechanics. In Symmetry in Chaotic Systems and Circuits; Volos, C., Ed.; Multidisciplinary Digital Publishing Institute (MDPI): Basel, Switzerland, 2022; pp. 199–217. [Google Scholar]
- Egorov, V.V. Dynamic pumping of elementary charge transfer by environmental dissipative reorganization. Russ. J. Electrochem. 2003, 39, 86–96. [Google Scholar] [CrossRef]
- Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966–978. [Google Scholar] [CrossRef]
- Marcus, R.A. Electrostatic free energy and other properties of states having nonequilibrium polarization. J. Chem. Phys. 1956, 24, 979–989. [Google Scholar] [CrossRef]
- Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J. Chem. Phys. 1957, 26, 867–871. [Google Scholar] [CrossRef]
- Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. III. Applications to data on the rates of organic redox reactions. J. Chem. Phys. 1957, 26, 872–877. [Google Scholar] [CrossRef]
- Marcus, R.A.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265–322. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610. [Google Scholar] [CrossRef]
- Huang, K.; Rhys, A. Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. A 1950, 204, 406–423. [Google Scholar]
- Lax, M. The Franck-Condon principle and its application to crystals. J. Chem. Phys. 1952, 20, 1752–1760. [Google Scholar] [CrossRef]
- Krivoglaz, M.A. The theory of thermal transitions. Zh. Eksp. Teor. Fiz. 1953, 25, 191–207. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorov, V.V. Quantum–Classical Mechanics and the Franck–Condon Principle. Comput. Sci. Math. Forum 2023, 7, 55. https://doi.org/10.3390/IOCMA2023-14396
Egorov VV. Quantum–Classical Mechanics and the Franck–Condon Principle. Computer Sciences & Mathematics Forum. 2023; 7(1):55. https://doi.org/10.3390/IOCMA2023-14396
Chicago/Turabian StyleEgorov, Vladimir V. 2023. "Quantum–Classical Mechanics and the Franck–Condon Principle" Computer Sciences & Mathematics Forum 7, no. 1: 55. https://doi.org/10.3390/IOCMA2023-14396
APA StyleEgorov, V. V. (2023). Quantum–Classical Mechanics and the Franck–Condon Principle. Computer Sciences & Mathematics Forum, 7(1), 55. https://doi.org/10.3390/IOCMA2023-14396