Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures †
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- There exist continuous and bounded functions such that
- For every in , is a nonempty convex and closed subset of .
- Assume that
4. Example
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, S.; Benchohra, M.; Henderson, J. Ulam stability for partial fractional integral inclusions via Picard operators. J. Frac. Calc. Appl. 2014, 5, 133–144. [Google Scholar]
- Aubin, J.P.; Cellina, A. Differential Inclusions Set-Valued Maps and Viability Theory; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Bressan, A. On the qualitative theory of lower semicontinuous differential inclusions. J. Differ. Equ. 1989, 77, 379–391. [Google Scholar] [CrossRef]
- Cichoń, M.; Cichoń, K.; Satco, B. Measure differential inclusions through selection principles in the space of regulated functions. Mediterr. J. Math. 2018, 15, 148. [Google Scholar] [CrossRef]
- Couchouron, J.-F.; Precup, R. Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps. Electron. J. Differ. Equ. 2002, 2002, 1–21. [Google Scholar]
- O’Regan, D.; Precup, R. Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 2000, 245, 594–612. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O.I. Fractional Integrals and Derivatives (Theorie and Applications); Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Frigon, M.; Adrián, F.T. Stieltjes differential systems with nonmonotonic derivators. Bound. Value Probl. 2020, 2020, 41. [Google Scholar] [CrossRef]
- Frigon, M.; Pouso, R.L. Theory and applications of first-order systems of Stieltjes differential equations. Adv. Nonlinear Anal. 2017, 6, 13–36. [Google Scholar] [CrossRef]
- López, P.R.; Márquez, A.I.; Rodríguez, L.J. Solvability of non-semicontinuous systems of Stieltjes differential inclusions and equations. Adv. Differ. Equ. 2020, 2020, 227. [Google Scholar] [CrossRef]
- Marraffa, V.; Satco, B. Stieltjes Differential Inclusions with Periodic Boundary Conditions without Upper Semicontinuity. Mathematics 2022, 10, 55. [Google Scholar] [CrossRef]
- Monteiro, G.A.; Satco, B. Extremal solutions for measure differential inclusions via Stieltjes derivatives. Adv. Differ. Equ. 2019, 2019, 239. [Google Scholar] [CrossRef]
- Appell, J.; Pascale, E.D.; Thai, N.H.; Zabreiko, P.P. Multi-Valued Superpositions; Instytut Matematyczny Polskiej Akademi Nauk: Warszawa, Poland, 1995. [Google Scholar]
- Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2001. [Google Scholar]
- Dudek, S.; Olszowy, L. Measures of noncompactness and superposition operator in the space of regulated functions on an unbounded interval. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghdad, S. Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures. Comput. Sci. Math. Forum 2023, 7, 37. https://doi.org/10.3390/IOCMA2023-14383
Baghdad S. Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures. Computer Sciences & Mathematics Forum. 2023; 7(1):37. https://doi.org/10.3390/IOCMA2023-14383
Chicago/Turabian StyleBaghdad, Said. 2023. "Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures" Computer Sciences & Mathematics Forum 7, no. 1: 37. https://doi.org/10.3390/IOCMA2023-14383
APA StyleBaghdad, S. (2023). Existence and Attractivity Results for Fractional Differential Inclusions via Nocompactness Measures. Computer Sciences & Mathematics Forum, 7(1), 37. https://doi.org/10.3390/IOCMA2023-14383