Estimating the Dependence Parameter of Farlie–Gumbel– Morgenstern-Type Bivariate Gamma Distribution Using Ranked Set Sampling †
Abstract
:1. Introduction
- Step I:
- Select k2 pairs from the population for the jth cycle.
- Step II:
- Divide the pairs into the k sets at random.
- Step III:
- Select rth order statistic and its concomitant from the rth set, where r = 1, 2, … , k.
- Step IV:
- Steps I–III are repeated m cycle, j = 1, 2, … , m.
2. Algorithms to Generate Samples
Algorithm 1: Generating data from FGM type bivariate gamma distribution. |
Step I: Generate u and p from i.i.d. random variates uniform ; Step II: and ; Step III: Set ; Step IV: The desired pair is ; Step V: and ; Step VI: RETURN . |
Algorithm 2: Generating RSS data from FGM type bivariate gamma distribution. |
Step I: Generate a random sample , , using Algorithm 1 for jth cycle; Step II: Divide the units in the sample randomly into k sets of size k each; Step III: Rank the units in each set from the smallest to the largest by using the variable X; Step IV: Select the order statistic and its concomitant variable from rth set; Step V: RETURN where and . |
3. Maximum-Likelihood Estimates of Dependence Parameter
3.1. ML Estimator from Simple Random Sample
3.2. ML Estimator from Ranked Set Sample
3.3. ML Estimator from Generalized Modified Ranked Set Sample
4. Results
5. Discussion
- In Table 1, it is observed that the estimated values of and are similar. The estimated values become closer to the actual as the sample size increases. Additionally, when considering the REs and RIs, we can say that the ML estimator based on RSS is as efficient as the ML estimator based on SRS. For researchers who study RSS and its extensions, the result might be a surprise. Similar results, however, were found by Stokes [15] and Sevil and Yildiz [18].
- Table 2 shows that the ML estimators based on GMRSS () and GMRSS () have smaller biases than the ML estimator based on GMRSS (). Additionally, it should be noted that compared to SRS, RSS and GMRSS (), GMRSS () and GMRSS () provide more efficient ML estimators. On the other hand, there is no evidence that and are monotone increasing or decreasing functions of the sample size n.
- When comparing SRS and RSS, Table 3 demonstrates that GMRSS () and GMRSS () have the least biases (aside from ). Thus, it is revealed that the ML estimator based on GMRSS () approaches the actual while the set size increases. Additionally, the highest REs and RIs are obtained when the samples are selected from the minimum ranked () pairs or maximum ranked () pairs. According to Table 2 and Table 3, we see that the REs and RIs decrease while the rank r increases for . On the other hand, it is observed that the REs and RIs increase in r for .
- Considering that GMRSS design only needs one rank value while RSS requires all rank values, it is obvious that a sample can be obtained by using GMRSS with less effort than RSS. Consequently, the authors recommend using the GMRSS () or GMRSS () design to estimate the dependence parameter of FGM-type bivariate gamma distribution for a set size k.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgenstern, D. Einfache beispiele zweidimensionaler verteilungen. Mitt. Math. Statist. 1956, 8, 234–235. [Google Scholar]
- Gumbel, E.J. Bivariate exponential distributions. J. Am. Stat. Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Farlie, D.J. The performance of some correlation coefficients for a general bivariate distribution. Biometrika 1960, 47, 307–323. [Google Scholar] [CrossRef]
- Nelsen, R.; Quesada-Molina, J.; Rodriguez-Lallena, A.J. Bivariate copulas with cubic sections. J. Nonparametric Stat. 1997, 7, 205–220. [Google Scholar] [CrossRef]
- Bairamov, I.; Kotz, S. On local dependence function for multivariate distributions. New Trends Probab. Stat. 2000, 5, 27–44. [Google Scholar] [CrossRef]
- Abo-Eleneen, Z.; Nagaraja, H. Fisher information in an order statistic and its concomitant. Ann. Inst. Stat. Math. 2002, 54, 667–680. [Google Scholar] [CrossRef]
- Ucer, B.H.; Yildiz, T.O. Estimation and goodness-of-fit procedures for Farlie–Gumbel–Morgenstern bivariate copula of order statistics. J. Stat. Comput. Simul. 2012, 82, 137–147. [Google Scholar] [CrossRef]
- Ucer, B.H.; Gurler, S. On the Mean Residual Lifetime at System Level in Two-Component Parallel Systems for the FGM Distribution. Hacet. J. Math. Stat. 2012, 41, 139–145. [Google Scholar]
- Gurler, S.; Ucer, B.H.; Bairamov, I. On the mean remaining strength at the system level for some bivariate survival models based on exponential distribution. J. Comput. Appl. Math. 2015, 290, 535–542. [Google Scholar] [CrossRef]
- Yildiz, T.; Ucer, B.H. Fisher Information of Dependence in Progressive Type II Censored Order Statistics and Their Concomitants. Int. J. Appl. Math. Stat. 2017, 56, 1–10. [Google Scholar]
- D’Este, G. A Morgenstern-type bivariate gamma distribution. Biometrika 1981, 68, 339–340. [Google Scholar] [CrossRef]
- Gupta, A.K.; Wong, C. On a Morgenstern-type bivariate gamma distribution. Metrika 1984, 31, 327–332. [Google Scholar] [CrossRef]
- Kotz, S.; Balakrishnan, N.; Johnson, N.L. Continuous Multivariate Distributions, Volume 1: Models and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- McIntyre, G. A method for unbiased selective sampling, using ranked sets. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Stokes, S.L. Inferences on the correlation coefficient in bivariate normal populations from ranked set samples. J. Am. Stat. Assoc. 1980, 75, 989–995. [Google Scholar] [CrossRef]
- Modarres, R.; Zheng, G. Maximum likelihood estimation of dependence parameter using ranked set sampling. Stat. Probab. Lett. 2004, 68, 315–323. [Google Scholar] [CrossRef]
- Al-Saleh, M.F.; Samawi, H.M. Estimation of the correlation coefficient using bivariate ranked set sampling with application to the bivariate normal distribution. Commun. Stat. Methods 2005, 34, 875–889. [Google Scholar] [CrossRef]
- Sevil, Y.C.; Yildiz, T.O. Gumbel’s bivariate exponential distribution: Estimation of the association parameter using ranked set sampling. Comput. Stat. 2022, 37, 1695–1726. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Johnson, M.B. Multivariate Statistical Simulation; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
0 | ||||||||||||||||||
n | 30 | 60 | 90 | 30 | 60 | 90 | 30 | 60 | 90 | |||||||||
k | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 |
n | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
30 | ||||||||||
60 | ||||||||||
90 | ||||||||||
0 | 30 | |||||||||
60 | ||||||||||
90 | ||||||||||
30 | ||||||||||
60 | ||||||||||
90 |
n | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | ||||||||||||||||
60 | ||||||||||||||||
90 | ||||||||||||||||
0 | 30 | |||||||||||||||
60 | ||||||||||||||||
90 | ||||||||||||||||
30 | ||||||||||||||||
60 | ||||||||||||||||
90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevil, Y.C.; Yildiz, T.O. Estimating the Dependence Parameter of Farlie–Gumbel– Morgenstern-Type Bivariate Gamma Distribution Using Ranked Set Sampling. Comput. Sci. Math. Forum 2023, 7, 11. https://doi.org/10.3390/IOCMA2023-14419
Sevil YC, Yildiz TO. Estimating the Dependence Parameter of Farlie–Gumbel– Morgenstern-Type Bivariate Gamma Distribution Using Ranked Set Sampling. Computer Sciences & Mathematics Forum. 2023; 7(1):11. https://doi.org/10.3390/IOCMA2023-14419
Chicago/Turabian StyleSevil, Yusuf Can, and Tugba Ozkal Yildiz. 2023. "Estimating the Dependence Parameter of Farlie–Gumbel– Morgenstern-Type Bivariate Gamma Distribution Using Ranked Set Sampling" Computer Sciences & Mathematics Forum 7, no. 1: 11. https://doi.org/10.3390/IOCMA2023-14419
APA StyleSevil, Y. C., & Yildiz, T. O. (2023). Estimating the Dependence Parameter of Farlie–Gumbel– Morgenstern-Type Bivariate Gamma Distribution Using Ranked Set Sampling. Computer Sciences & Mathematics Forum, 7(1), 11. https://doi.org/10.3390/IOCMA2023-14419