Drift and Diffusion in Geospatial Econometrics: Implications for Panel Data and Time Series †
Abstract
1. Introduction
2. Materials and Methods
- Data engineering of predictive variables as a prelude to an escalating suite of predictive methods, from ordinary least squares (OLS) to machine learning ensembles such as random forests and extra trees;
- Two-stage least squares (2SLS) methodology [3];
- Iterative local regression of instances closest to each of the 20,640 observations.
3. Results
4. Discussion: Geospatial Analysis
4.1. Data Engineering
4.2. Two-Stage Least Squares (2SLS)
- The deterministic drift term captures a system’s unconditional traits—namely, those that do not vary across time or space (however those dimensions might be defined);
- The stochastic diffusion term captures variability over time or space, perhaps most readily understood in the special instance of zero-drift Brownian motion [20].
4.3. Iterative Local Regression
5. Discussion: Panel Data Analysis and Time-Series Forecasting
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2SLS | Two-stage least squares |
KNN | k-nearest neighbors. The prefatory letters “s” and “u,” respectively, indicate “supervised” and “unsupervised” k-nearest neighbors (sKNN and uKNN). |
OLS | Ordinary least squares |
References
- Williams, T. The Glass Menagerie, 1st ed.; and introduction. 16th printing; Bray, R., Ed.; New Directions: New York, NY, USA; Random House: New York, NY, USA, 2011. [Google Scholar]
- Pace, R.K.; Barry, R. Sparse spatial autoregression. Stat. Prob. Lett. 1997, 33, 291–297. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Paelinck, J.H.P.; Klaassen, L.H. Spatial Econometrics; Saxon House: Farnborough, UK, 1979. [Google Scholar]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–26. [Google Scholar] [CrossRef]
- Arbia, G. Spatial econometrics: A rapidly evolving discipline. Econometrics 2016, 4, 18. [Google Scholar] [CrossRef]
- Arbia, G.; Fingleton, B. New spatial econometric techniques and applications in regional science. Pap. Reg. Sci. 2008, 87, 311–317. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Fin. Econ. 1998, 17, 99–121. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. 2SLS and OLS in a spatial autoregressive model with equal spatial weights. Reg. Sci. Urban Econ. 2002, 32, 691–707. [Google Scholar] [CrossRef]
- Lee, L.-F. GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J. Econom. 2007, 137, 489–514. [Google Scholar] [CrossRef]
- Lu, A.X.; Moses, A.M. An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images. PLoS ONE 2016, 11, e0158712. [Google Scholar] [CrossRef]
- Song, Y.; Liang, J.; Liu, J.; Zhao, X. An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Chen, J.M. A practical introduction to regularized regression for panel data. Contrib. Stat. 2026; in press. [Google Scholar]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psych. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Sys. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- SciKit-Learn documentation. Fetch_California_Housing. 2025. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html (accessed on 11 May 2025).
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Annals Stat. 2004, 32, 407–499. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the KDD ‘16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Pollak, M.; Siegmund, D. A diffusion process and its applications to detecting a change in the drift of Brownian motion. Biometrika 1985, 72, 267–280. [Google Scholar] [CrossRef]
- Fudenberg, D.; Newey, W.; Strack, P.; Strzalecki, T. Testing the drift-diffusion model. Proc. Natl. Acad. Scis. USA 2020, 117, 33141–33148. [Google Scholar] [CrossRef]
- Richter, T.; Ulrich, R.; Janczyk, M. Diffusion models with time-dependent parameters: An analysis computational effort and accuracy of different numerical methods. J. Math. Psych. 2023, 114, 102756. [Google Scholar] [CrossRef]
- Sura, P.; Barsugli, J. A note on estimating drift and diffusion parameters from timeseries. Phys. Lett. A 2002, 305, 304–311. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Li, R.; Li, X.; Gao, J. Diffusion models for time series applications: A survey. arXiv 2023, arXiv:2305.00624v1. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Xu, G.; Liu, D. Simulation of red tide drift-diffusion process in the Pearl River estuary and its response to the environment. Front. Mar. Sci. 2023, 10, 1096896. [Google Scholar] [CrossRef]
- Dubin, R.A. Spatial autocorrelation and neighborhood quality. Reg. Sci. Urban Econ. 1992, 22, 433–452. [Google Scholar] [CrossRef]
- Harrison, D.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Mgmt. 1978, 5, 81–102. [Google Scholar] [CrossRef]
- Dubin, R.; Pace, K.; Thibodeau, T. Spatial autoregression techniques for real estate data. J. Real Estate Lit. 1999, 7, 79–95. [Google Scholar] [CrossRef]
- Darmofal, D. Spatial Analysis for the Social Sciences; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781316395271. [Google Scholar]
- Lam, C.; Souza, P.C.L. Estimation and selection of spatial weight matrix in a spatial lag model. J. Bus. Econ. Stat. 2020, 38, 693–710. [Google Scholar] [CrossRef]
- Lambert, D.M.; Brown, J.P.; Florax, R.J.G.M. A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application. Reg. Sci. Urban Econ. 2010, 40, 241–252. [Google Scholar] [CrossRef]
- Tudor, S.; Cilan, T.F.; Năstase, L.L.; Ecobici, M.L.; Opran, E.R.; Cojocaru, A.V. Evolution of interdependencies between education and the labor market in the view of sustainable development and investment in the educational system. Sustainability 2023, 15, 3908. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Livieris, I.E.; Stavroyiannis, S.; Pintelas, E.; Pintelas, P. A novel validation framework to enhance deep learning models in time-series forecasting. Neural Comput. Appl. 2020, 32, 17149–17167. [Google Scholar] [CrossRef]
- Wahyuddin, E.P.; Caraka, R.E.; Kurniawan, R.; Caesarendra, W.; Gio, P.U.; Pardamean, B. Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction. J. Open Innov. Tech. Mark. Complex. 2025, 11, 100458. [Google Scholar] [CrossRef]
- Forbes, K.J. A reassessment of the relationship between inequality and growth. Am. Econ. Rev. 2000, 90, 869–887. [Google Scholar] [CrossRef]
- Christensen, H.L.; Murphy, J.; Godsill, S.J. Forecasting high-frequency futures returns using online Langevin dynamics. IEEE J. Sel. Top. Signal Process. 2012, 6, 366–380. [Google Scholar] [CrossRef]
- Ahmed, M.; Haider, G.; Zaman, A. Detecting structural change with heteroskedasticity. Commun. Stat.—Theory Methods 2016, 46, 10446–10455. [Google Scholar] [CrossRef]
- Chen, J.M.; Poufinas, T.; Panagopoulou, A. Drift and diffusion in panel data: Extracting geopolitical and temporal effects in a study of passenger rail traffic. Comput. Sci. Math. Forum, 2025; in press. [Google Scholar]
- Woodward, C. American Nations: A History of the Eleven Rival Regional Cultures of North America; Viking: New York, NY, USA, 2011. [Google Scholar]
- Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Fin. 1974, 29, 449–470. [Google Scholar] [CrossRef]
- Arbia, G. Spatial econometrics: A broad view. Found. Trends Econom. 2016, 8, 145–265. [Google Scholar] [CrossRef]
Method | Test r2 |
---|---|
OLS | 0.655572 |
sKNN: location only | 0.781847 |
sKNN: all features | 0.788524 |
XGBoost | 0.836620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.M. Drift and Diffusion in Geospatial Econometrics: Implications for Panel Data and Time Series. Comput. Sci. Math. Forum 2025, 11, 24. https://doi.org/10.3390/cmsf2025011024
Chen JM. Drift and Diffusion in Geospatial Econometrics: Implications for Panel Data and Time Series. Computer Sciences & Mathematics Forum. 2025; 11(1):24. https://doi.org/10.3390/cmsf2025011024
Chicago/Turabian StyleChen, James Ming. 2025. "Drift and Diffusion in Geospatial Econometrics: Implications for Panel Data and Time Series" Computer Sciences & Mathematics Forum 11, no. 1: 24. https://doi.org/10.3390/cmsf2025011024
APA StyleChen, J. M. (2025). Drift and Diffusion in Geospatial Econometrics: Implications for Panel Data and Time Series. Computer Sciences & Mathematics Forum, 11(1), 24. https://doi.org/10.3390/cmsf2025011024