Molecular Characterization of Fowl Adenovirus from Brazilian Poultry Farms
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Analysis
2.3. FAdV Hexon Gene Dataset
2.4. Phylogenetic Analysis
2.5. Amino Acid Substitution Analysis
3. Results
3.1. FAdV Detection and Serotype Identification
3.2. Recombination and Phylogenetic Analysis
3.3. Amino Acid Substitution in the Hexon Protein
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harrach, B.; Tarján, Z.L.; Benkő, M. Adenoviruses across the animal kingdom: A walk in the zoo. FEBS Lett. 2019, 593, 3660–3673. [Google Scholar] [CrossRef]
- Li, P.H.; Zheng, P.P.; Zhang, T.F.; Wen, G.Y.; Shao, H.B.; Luo, Q.P. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. Poult. Sci. 2017, 96, 2630–2640. [Google Scholar] [CrossRef]
- Hosseini, H.; Langeroudi, A.G.; FallahMehrabadi, M.H.; Ziafati Kafi, Z.; Dizaji, R.E.; Ghafouri, S.A.; Hamadan, A.M.; Aghaiyan, L.; Hajizamani, N. The fowl adenovirus (Fadv-11) outbreak in Iranian broiler chicken farms: The first full genome characterization and phylogenetic analysis. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101365. [Google Scholar] [CrossRef] [PubMed]
- Hess, M. Adenovirus Infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; p. 322. [Google Scholar]
- Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef]
- Postler, T.S.; Rubino, L.; Adriaenssens, E.M.; Dutilh, B.E.; Harrach, B.; Junglen, S.; Kropinski, A.M.; Krupovic, M.; Wada, J.; Crane, A.; et al. Guidance for creating individual and batch latinized binomial virus species names. J. Gen. Virol. 2022, 103, 001800. [Google Scholar] [CrossRef]
- Vera-Hernández, P.F.; Morales-Garzón, A.; Cortés-Espinosa, D.V.; Galiote-Flores, A.; García-Barrera, L.J.; Rodríguez-Galindo, E.T.; Toscano-Contreras, A.; Lucio-Decanini, E.; Absalón, A.E. Clinicopathological characterization and genomic sequence differences observed in a highly virulent fowl Aviadenovirus serotype 4. Avian Pathol. 2016, 45, 73–81. [Google Scholar] [CrossRef]
- De la Torre, D.; Nuñez, L.F.N.; Santander Parra, S.H.; Astolfi-Ferreira, C.S.; Piantino Ferreira, A.J. Molecular characterization of fowl adenovirus group I in commercial broiler chickens in Brazil. Virusdisease 2018, 29, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Schachner, A.; Matos, M.; Grafl, B.; Hess, M. Fowl adenovirus-induced diseases and strategies for their control—A review on the current global situation. Avian Pathol. 2018, 47, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Steer, P.A.; Kirkpatrick, N.C.; O’Rourke, D.; Noormohammadi, A.H. Classification of fowl adenovirus serotypes by use of high-resolution melting-curve analysis of the hexon gene region. J. Clin. Microbiol. 2009, 47, 311–321. [Google Scholar] [CrossRef]
- Mettifogo, E.; Nuñez, L.F.; Santander Parra, S.H.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P. Fowl adenovirus Group I as a causal agent of inclusion body hepatitis/hydropericardium syndrome (IBH/HPS) outbreak in brazilian broiler flocks. Pesq. Vet. Bras. 2014, 34, 733–737. [Google Scholar] [CrossRef]
- Niczyporuk, J.S. A complete analysis of Relative Synonymous Codon Usage in HVRs1-4 region in adenovirus genome. Pol. J. Vet. Sci. 2018, 21, 459–468. [Google Scholar] [CrossRef]
- Mittal, D.; Jindal, N.; Tiwari, A.K.; Khokhar, R.S. Characterization of fowl adenoviruses associated with hydropericardium syndrome and inclusion body hepatitis in broiler chickens. Virusdisease 2014, 25, 114–119. [Google Scholar] [CrossRef]
- Grafl, B.; Aigner, F.; Liebhart, D.; Marek, A.; Prokofieva, I.; Bachmeier, J.; Hess, M. Vertical transmission and clinical signs in broiler breeders and broilers experiencing adenoviral gizzard erosion. Avian Pathol. 2012, 41, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Schachner, A.; Marek, A.; Grafl, B.; Hess, M. Detailed molecular analyses of the hexon loop-1 and fibers of fowl aviadenoviruses reveal new insights into the antigenic relationship and confirm that specific genotypes are involved in field outbreaks of inclusion body hepatitis. Vet. Microbiol. 2016, 86, 13–20. [Google Scholar] [CrossRef]
- Izquierdo-Lara, R.; Calderón, K.; Chumbe, A.; Montesinos, R.; Montalván, Á.; González, A.E.; Icochea, E.; Fernández-Díaz, M. Complete Genome Sequence of Fowl Aviadenovirus Serotype 8b Isolated in South America. Genome Announc. 2016, 4, e01174-16. [Google Scholar] [CrossRef] [PubMed]
- Santander-Parra, S.H.; Caza, M.; Nuñez, L. Detection, Quantification and Molecular Characterization of Fowl Adenoviruses Circulating in Ecuadorian Chicken Flocks during 2019–2021. Vet. Sci. 2023, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Cádiz, L.; Guzmán, M.; Navarrete, F.; Torres, P.; Hidalgo, H. First Molecular Detection and Characterization of Fowl Aviadenovirus Serotype 11 from Broiler Chickens in Chile. Microbiol. Res. 2024, 15, 626–633. [Google Scholar] [CrossRef]
- Günes, A.; Marek, A.; Grafl, B.; Berger, E.; Hess, M. Real-time PCR assay for universal detection and quantitation of all five species of fowl adenoviruses (FAdV-A to FAdV-E). J. Virol. Methods 2012, 183, 147–153. [Google Scholar] [CrossRef]
- Kaján, G.L.; Sameti, S.; Benko, M. Partial sequence of the DNA-dependent DNA polymerase gene of fowl adenoviruses: A reference panel for a general diagnostic PCR in poultry. Acta Vet. Hung. 2011, 59, 279–285. [Google Scholar] [CrossRef]
- Günes, A.; Marek, A.; Hess, M. Species determination of fowl adenoviruses based on the 52K gene region. Avian Dis. 2013, 57, 290–294. [Google Scholar] [CrossRef]
- Meulemans, G.; Boschmans, M.; Berg, T.P.; Decaesstecker, M. Polymerase chain reaction combined with restriction enzyme analysis for detection and differentiation of fowl adenoviruses. Avian Pathol. 2001, 30, 655–660. [Google Scholar] [CrossRef]
- Meulemans, G.; Couvreur, B.; Decaesstecker, M.; Boschmans, M.; van den Berg, T.P. Phylogenetic analysis of fowl adenoviruses. Avian Pathol. 2004, 33, 164–170. [Google Scholar] [CrossRef]
- Saban, S.D.; Silvestry, M.; Nemerow, G.R.; Stewart, P.L. Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J. Virol. 2006, 80, 12049–12059. [Google Scholar] [CrossRef]
- Kaján, G.L.; Schachner, A.; Gellért, Á.; Hess, M. Species Fowl aviadenovirus B Consists of a Single Serotype despite Genetic Distance of FAdV-5 Isolates. Viruses 2022, 14, 248. [Google Scholar] [CrossRef]
- Li, S.; Zhao, R.; Yang, Q.; Wu, M.; Ma, J.; Wei, Y.; Pang, Z.; Wu, C.; Liu, Y.; Gu, Y.; et al. Phylogenetic and pathogenic characterization of current fowl adenoviruses in China. Infect. Genet. Evol. 2022, 105, 105366. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Crawford-Miksza, L.; Schnurr, D.P. Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J. Virol. 1996, 70, 1836–1844. [Google Scholar] [CrossRef]
- Marek, A.; Günes, A.; Schulz, E.; Hess, M. Classification of fowl adenoviruses by use of phylogenetic analysis and high-resolution melting-curve analysis of the hexon L1 gene region. J. Virol. Methods 2010, 170, 147–154. [Google Scholar] [CrossRef]
- Adel, A.; Mohamed, A.A.E.; Samir, M.; Hagag, N.M.; Erfan, A.; Said, M.; Arafa, A.E.S.; Hassan, W.M.M.; El Zowalaty, M.E.; Shahien, M.A. Epidemiological and molecular analysis of circulating fowl adenoviruses and emerging of serotypes 1, 3, and 8b in Egypt. Heliyon 2021, 7, e08366. [Google Scholar] [CrossRef]
- El-Shall, N.A.; El-Hamid, H.S.A.; Elkady, M.F.; Ellakany, H.F.; Elbestawy, A.R.; Gado, A.R.; Geneedy, A.M.; Hasan, M.E.; Jaremko, M.; Selim, S.; et al. Epidemiology, pathology, prevention, and control strategies of inclusion body hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. Front. Vet. Sci. 2022, 11, 963199. [Google Scholar] [CrossRef]
- Pereira, C.G.; Marin, S.Y.; Santos, B.M.; Resende, J.S.; Resende, M.; Gomes, A.M.; Martins, N.R.S. Occurrence of Aviadenovirus in chickens from the poultry industry of Minas Gerais. Arq. Bras. Med. Vet. Zootec. 2014, 66, 801–808. [Google Scholar] [CrossRef]
- Lima, D.A.; Cibulski, S.P.; Finkler, F.; Teixeira, T.F.; Varela, A.P.M.; Cerva, C.; Loiko, M.R.; Scheffer, C.M.; Dos Santos, H.F.; Mayer, F.Q.; et al. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J. Gen. Virol. 2017, 98, 690–703. [Google Scholar] [CrossRef]
- Marín, S.Y.; Ecco, R.; Freitas Neto, O.C.D.; Silva, D.H.L.D.; Marcelino, S.A.C.; Lopes, M.C.; Costa, C.S.; Resende, M.; Teixeira, M.d.S.; Martins, N.R.D.S. Fowl Aviadenovirus E associated with hepatitis-hydropericardium syndrome in broiler breeders. Cienc. Rural. 2022, 53, e20210462. [Google Scholar] [CrossRef]
- Ono, M.; Okuda, Y.; Yazawa, S.; Shibata, I.; Sato, S.; Okada, K. Outbreaks of adenoviral gizzard erosion in slaughtered broiler chickens in Japan. Vet. Rec. 2003, 153, 775–779. [Google Scholar] [CrossRef]
- Bertran, K.; Blanco, A.; Antilles, N.; Nofrarías, M.; Valle, R.M.; Cobos, À.; Ramis, A.; Biarnés, M.; Majó, N. A 10-Year Retrospective Study of Inclusion Body Hepatitis in Meat-Type Chickens in Spain (2011–2021). Viruses 2021, 13, 2170. [Google Scholar] [CrossRef]
- Chen, L.; Yin, L.; Peng, P.; Zhou, Q.; Du, Y.; Zhang, Y.; Xue, C.; Cao, Y. Isolation and Characterization of A Novel Fowl Adenovirus Serotype 8a Strain from China. Virol. Sin. 2020, 35, 517–527. [Google Scholar] [CrossRef]
- Chavan, V.G.; Awandkar, S.P.; Kulkarni, M.B.; Chavhan, S.G.; Kulkarni, R.C.; Agnihotri, A.A. Molecular phylodynamics of fowl adenovirus serotype 11 and 8b from inclusion body hepatitis outbreaks. Virus Genes. 2023, 59, 148–157. [Google Scholar] [CrossRef]
- Lai, V.D.; Min, K.; Lai, H.T.L.; Mo, J. Epidemiology of fowl adenovirus (FAdV) infections in South Korean chickens during 2013–2019 following introduction of FAdV-4 vaccines. Avian Pathol. 2021, 50, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Mo, J. Historical Investigation of Fowl Adenovirus Outbreaks in South Korea from 2007 to 2021: A Comprehensive Review. Viruses 2021, 13, 2256. [Google Scholar] [CrossRef]
- Vujadinovic, M.; Vellinga, J. Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Song, C.; Yang, P.; Song, M.; Zhao, S.; Qiao, Q.; Wang, Z.; Zhao, J. The Role of Hexon Amino Acid 188 Varies in Fowl Adenovirus Serotype 4 Strains with Different Virulence. Microbiol. Spectr. 2022, 10, e0149322. [Google Scholar] [CrossRef]
- Liu, J.; Shi, X.; Lv, L.; Wang, K.; Yang, Z.; Li, Y.; Chen, H. Characterization of Co-infection With Fowl Adenovirus Serotype 4 and 8a. Front. Microbiol. 2021, 12, 771805. [Google Scholar] [CrossRef]
- Yu, G.; Lin, Y.; Dou, Y.; Tang, Y.; Diao, Y. Prevalence of Fowl Adenovirus Serotype 4 and Co-Infection by Immunosuppressive Viruses in Fowl with Hydropericardium Hepatitis Syndrome in Shandong Province, China. Viruses 2019, 11, 517. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, S.; Wang, H.; Li, C.; Diao, Y.; Tang, Y. Synergistic pathogenicity in sequential coinfection with fowl adenovirus type 4 and avian orthoreovirus. Vet. Microbiol. 2020, 251, 108880. [Google Scholar] [CrossRef] [PubMed]
- Rahul, S.; Kataria, J.M.; Senthilkumar, N.; Dhama, K.; Sylvester, S.A.; Uma, R. Association of fowl adenovirus serotype 12 with hydropericardium syndrome of poultry in India. Acta Virol. 2005, 49, 139–143. [Google Scholar]
- Saifuddin, M.; Wilks, C.R. Reproduction of inclusion body hepatitis in conventionally raised chickens inoculated with a New Zealand isolate of avian adenovirus. N. Z. Vet. J. 1990, 38, 62–65. [Google Scholar] [CrossRef]
- Shah, M.S.; Ashraf, A.; Khan, M.I.; Rahman, M.; Habib, M.; Chughtai, M.I.; Qureshi, J.A. Fowl adenovirus: History, emergence, biology and development of a vaccine against hydropericardium syndrome. Arch. Virol. 2017, 162, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhang, Y.; Cui, H.; Wang, X.; Gao, Y.; Pan, Q. Advances in Vaccine Development of the Emerging Novel Genotype Fowl Adenovirus 4. Front. Immunol. 2022, 13, 916290. [Google Scholar] [CrossRef] [PubMed]
Serotypes | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 193 | 194 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FAdV-1 | N | V | V | G | Q | M | T | N | V | Y | T | S | R |
FAdV-2 | V | I | T | . | . | . | . | T | P | . | E | D | E |
FAdV-3 | V | I | T | . | L | . | . | . | P | . | Q | D | D |
FAdV-4 | S | A | S | . | . | L | S | . | . | . | . | R | R/Q |
FAdV-5 | V | I | T | . | . | . | . | H | P | . | A | A | T |
FAdV-6 | I | I | T | . | . | . | . | . | P | . | E | . | S |
FAdV-7 | S | I | T | . | . | . | . | . | P | . | S | T | T |
FAdV-8a | T | I | T | . | . | . | S | . | P | . | E | . | T |
FAdV-8b | T | I | T | . | . | . | . | . | P | . | K | T | P |
FAdV-9 | V | I | T | . | L | . | . | T | P | . | R | D | D |
FAdV-10 | T | A | S | . | . | L | S | . | . | . | . | R | Q |
FAdV-11 | V | I | T | . | . | . | . | T | P | . | E | D | A |
Species | 142 | 143 | 145 | 146 | 148 | 154 | 155 | 162 | 164 | 165 | 166 | 167 | 171 | 178 | 198 | 213 | 215 | 235 | 241 | 243 | 244 | 245 | 253 | 259 | 273 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FAdV-A1 | S | T | P | Q | N | T | N | R | D | K | T | A | Q | V | D | G | K | Q | M | N | G | G | A | Q | T |
FAdV-C4 | T | A | G | N | S | S | . | S | T/S | . | D | T | . | . | A | Q | N | . | . | . | A/T | . | . | N | E |
FAdV-C10 | T | A | G | N | T | S | . | . | S | . | A | T | . | . | . | R | . | . | . | . | A | . | . | N | D |
FAdV-D2 | T | G/E | N/S | K | V | . | T | Q | A | . | D | K | I | . | ./V | N | R | P | . | S | S/T | A/. | G | A | . |
FAdV-D3 | T | D | N | K | V | . | . | Q | N | N | . | N | I | . | . | N | R | P | . | . | T | . | G | T | S |
FAdV-D9 | . | E | N | K | V | . | T | Q | N | . | . | N | V | . | . | N | R | P | . | K | T | D | . | T | S |
FAdV-D11 | T | E | S | K | V | . | T | Q | A | . | D | K | I | . | A | N | R | P | . | S | N | A | G | A | . |
FAdV-E6 | D | E | N | K | I | . | . | Q | S | P | . | . | A | T | T | N | R | A | L | S | T | S | G | . | S |
FAdV-E7 | E | D | D | K | S | . | . | Q | T | P | . | . | A | S | A | N | R | A | L | S | T | S | G | . | S |
FAdV-E8a | E | D | N | K | T | S | . | Q | T | A | A | E | V | S | A | N | R | A | . | S | . | S | G | D | L/Y/I |
FAdV-E8b | D | D | N | N | T | . | . | Q | T | A | . | . | A | S | A | N | R | T | L | T | T | A | G | . | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, A.S.K.; Kipper, D.; Ikuta, N.; Lunge, V.R. Molecular Characterization of Fowl Adenovirus from Brazilian Poultry Farms. Poultry 2025, 4, 45. https://doi.org/10.3390/poultry4040045
Fonseca ASK, Kipper D, Ikuta N, Lunge VR. Molecular Characterization of Fowl Adenovirus from Brazilian Poultry Farms. Poultry. 2025; 4(4):45. https://doi.org/10.3390/poultry4040045
Chicago/Turabian StyleFonseca, André Salvador Kazantzi, Diéssy Kipper, Nilo Ikuta, and Vagner Ricardo Lunge. 2025. "Molecular Characterization of Fowl Adenovirus from Brazilian Poultry Farms" Poultry 4, no. 4: 45. https://doi.org/10.3390/poultry4040045
APA StyleFonseca, A. S. K., Kipper, D., Ikuta, N., & Lunge, V. R. (2025). Molecular Characterization of Fowl Adenovirus from Brazilian Poultry Farms. Poultry, 4(4), 45. https://doi.org/10.3390/poultry4040045