Understanding the Genetic Variation and Structure of the Rustipollos Chicken Synthetic Population Locally Adapted to Paraguay: Opportunities for a Sustainable Chicken Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chicken Population and Samples Collection
2.2. DNA Extraction and Microsatellites Genotyping
2.3. Statistical and Genetic Analysis
3. Results
3.1. Polymorphism of Markers across the 22 Chicken Breeds/Populations
3.2. Genetic Diversity among the 22 Chicken Breeds/Populations Analyzed
3.3. Genetic Differentiation, Genetic Distance, and Phylogenetic Relationships among Rustipollos Population and the 22 Reference Chicken Breeds/Populations
3.4. Genetic Structure and Admixture Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Chicken Genetic Resources Used in Smallholder Production Systems and Opportunities for Their Development; Sørensen, P., Ed.; Smallholder Poultry Production Paper No. 5; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/3/al675e/al675e00.pdf (accessed on 20 September 2023).
- Castro, L.; Núñez, L.; Ramírez, L.; Rodríguez, I.; Álvarez, R.; Martínez-López, O.R. Importancia de la cría de gallinas de traspatio en cuatro comunidades indígenas del departamento de presidente hayes, Chaco Paraguayo. Actas Iberoam. Conserv. Anim. 2016, 8, 63–68. [Google Scholar]
- Abdelqader, A.; Wollny, C.B.A.; Gauly, M. Characterization of Local Chicken Production Systems and Their Potential under Different Levels of Management Practice in Jordan. Trop. Anim. Health Prod. 2007, 39, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Bakare, I.O.; Ilori, B.M.; Wheto, M.; Egbeyale, L.T.; Sanda, A.J.; Olowofeso, O. Genetic diversity and gene flow among three chicken populations in Nigeria using microsatellite markers. Agric. Conspec. Sci. 2021, 86, 173–181. [Google Scholar]
- Toalombo Vargas, P.A.; León, J.M.; Fiallos Ortega, L.R.; Martinez, A.; Villafuerte Gavilanes, A.A.; Delgado, J.V.; Landi, V. Deciphering the patterns of genetic admixture and diversity in the Ecuadorian creole chicken. Animals 2019, 9, 670. [Google Scholar] [CrossRef] [PubMed]
- Habimana, R.; Okeno, T.O.; Ngeno, K.; Mboumba, S.; Assami, P.; Gbotto, A.A.; Keambou, C.T.; Nishimwe, K.; Mahoro, J.; Yao, N. Genetic diversity and population structure of indigenous chicken in Rwanda using microsatellite markers. PLoS ONE 2020, 15, e0225084. [Google Scholar] [CrossRef] [PubMed]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.R.; Seo, D.W.; Jemaa, S.B.; Sultana, H.; Heo, K.N.; Jo, C.; Lee, J.H. Discrimination of the commercial Korean native chicken population using microsatellite markers. J. Anim. Sci. Technol. 2015, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Dottavio, A.M.; Di Masso, R.J. Mejoramiento avícola para sistemas productivos semi-intensivos que preservan el bienestar animal. J. Basic Appl. Genet. 2010, 21, 1–10. [Google Scholar]
- Seo, D.W.; Hoque, M.R.; Choi, N.R.; Sultana, H.; Park, H.B.; Heo, K.N.; Kang, B.S.; Lim, H.T.; Lee, S.H.; Jo, C.; et al. Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian-Australas. J. Anim. Sci. 2013, 26, 316–322. [Google Scholar] [CrossRef]
- Possamai, M.H.P.; Battilana, J.; Paludo, E.; Herkenhoff, M.E.; Pértile, F.; da Veiga Lima-Rosa, C.A. Genotypic characterization of ten microsatellite loci in two Brazilian free range (Caipira) chicken lines. Cienc. Rural. 2015, 45, 877–883. [Google Scholar] [CrossRef]
- Vergara, O. Inicio de la población aviar rustipollo. In Avance Veterinario: Rustipollos; Facultad de Ciencias Veterinarias: San Lorenzo, Paraguay, 2010; p. 20. [Google Scholar]
- Torres, J. Evaluación de la Ganancia de Peso de Rustipollos Machos Destinados a la Producción de Carne. Bachelor’s Thesis, Facultad de Ciencias Veterinarias, Universidad Nacional de Asunción, San Lorenzo, Paraguay, 2012. [Google Scholar]
- Amarilla, C. Evaluación de la Ganancia de Peso e Inicio de Postura de Rustipollos Hembras. Bachelor’s Thesis, Universidad Nacional de Asunción, San Lorenzo, Paraguay, 2012. [Google Scholar]
- Irala, C. Caracterización del Peso y Color de la Cáscara de los Huevos de Gallinas Tipo Rustipollos de Entre 30 y 40 Semanas de Edad en el Departamento de Avicultura de la FCV-UNA. Bachelor’s Thesis, Universidad Nacional de Asunción, San Lorenzo, Paraguay, 2021. [Google Scholar]
- Alcaraz, R. Nivel de Satisfacción de los Productores en la Producción de Rustipollos Adquiridos en el Departamento de Producción Animal División de Avicultura FCV–UNA. Bachelor’s Thesis, Universidad Nacional de Asunción, San Lorenzo, Paraguay, 2021. [Google Scholar]
- Nxumalo, N.; Ceccobelli, S.; Cardinali, I.; Lancioni, H.; Lasagna, E.; Kunene, N.W. Genetic diversity, population structure and ancestral origin of KwaZulu-Natal native chicken ecotypes using microsatellite and mitochondrial DNA markers. Ital. J. Anim. Sci. 2020, 19, 1275–1288. [Google Scholar] [CrossRef]
- Tadano, R.; Nishibori, M.; Nagasaka, N.; Tsudzuki, M. Assessing genetic diversity and population structure for commercial chicken lines based on forty microsatellite analyses. Poult. Sci. 2007, 86, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, D.; Cassandro, M. Assessment of the population structure and genetic diversity of Denizli chicken subpopulations using SSR markers. Ital. J. Anim. Sci. 2018, 17, 312–320. [Google Scholar] [CrossRef]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef]
- FAO. Secondary guidelines: Measurement of domestic animal diversity (MoDAD). In Draft Guidelines on Molecular Genetic Characterization, 6th ed.; FAO: Rome, Italy, 2010; pp. 66–68. Available online: https://www.fao.org/3/am652e/am652e.pdf (accessed on 20 September 2023).
- Pham, M.H.; Berthouly-Salazar, C.; Tran, X.H.; Chang, W.H.; Crooijmans, R.P.M.A.; Lin, D.Y.; Hoang, V.T.; Lee, Y.P.; Tixier-Boichard, M.; Chen, C.F. Genetic diversity of Vietnamese domestic chicken populations as decision-making support for conservation strategies. Anim. Genet. 2013, 44, 509–521. [Google Scholar] [CrossRef]
- Ceccobelli, S.; Di Lorenzo, P.; Lancioni, H.; Monteagudo Ibáñez, L.V.; Tejedor, M.T.; Castellini, C.; Landi, V.; Martínez Martínez, A.; Delgado Bermejo, J.V.; Vega Pla, J.L.; et al. Genetic diversity and phylogeographic structure of sixteen Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA. Livest. Sci. 2015, 175, 27–36. [Google Scholar] [CrossRef]
- Abebe, A.S.; Mikko, S.; Johansson, A.M. Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers. PLoS ONE 2015, 10, e0120580. [Google Scholar] [CrossRef]
- Araújo de Carvalho, D.; Martínez Martínez, A.; Carolino, I.; Barros, M.C.; Camacho Vallejo, M.E.; Santos-Silva, F.; de Oliveira Almeida, M.J.; Carolino, N.; Delgado Bermejo, J.V.; Sarmento, J.L.R. Diversity and genetic relationship of free-range chickens from the northeast region of Brazil. Animals 2020, 10, 1857. [Google Scholar] [CrossRef]
- Van Marle-Köster, E.; Hefer, C.A.; Nel, L.H.; Groenen, M.A.M. Genetic diversity and population structure of locally adapted South African chicken lines: Implications for conservation. S. Afr. J. Anim. Sci. 2008, 38, 271–281. [Google Scholar]
- Tadano, R.; Nagasaka, N.; Goto, N.; Rikimaru, K.; Tsudzuki, M. Genetic characterization and conservation priorities of chicken lines. Poult. Sci. 2013, 92, 2860–2865. [Google Scholar] [CrossRef]
- FAO. Molecular Genetic Characterization of Animal Genetic Resources. Available online: https://www.fao.org/3/i2413e/i2413e00.htm (accessed on 20 September 2023).
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T. Hp-Rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes. 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Kalinowski, S.T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 2004, 5, 539–543. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Belkhir, K.P.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F.; Belkhirr, K. GENETIX 4.05, Logiciel Sous Windows TM Pour la Génétique des Populations; Laboratoire Génome, Populations, Interactions, CNRS UMR 5171; Université de Montpellier II: Montpellier, France, 2004. [Google Scholar]
- Lewis, P.O.; Zaykin, D. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data, v. 1.0. 1999. Available online: https://plewis.github.io/software (accessed on 20 September 2023).
- Reynolds, J.; Weir, B.S.; Cockerham, C.C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 1983, 105, 767–779. [Google Scholar] [CrossRef]
- Langella, O. POPULATIONS 1.2.30: Population Genetic Software; Laboratoire Evolution, Génomes et Spéciation: Gif-sur-Yvette, France, 1999. [Google Scholar]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Funk, S.M.; Guedaoura, S.; Juras, R.; Raziq, A.; Landolsi, F.; Luís, C.; Martínez Martínez, A.; Mayaki, M.M.; Mujica, F.; do Mar Oom, M.; et al. Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using microsatellites. Ecol. Evol. 2020, 10, 4261–4279. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Palacios, E.Y.; Álvarez, L.; Muñoz, J. Genetic diversity of Creole hens of the Colombian southwest. Arch. Zootec. 2016, 65, 73–78. [Google Scholar] [CrossRef]
- Bianchi, M.; Ceccobelli, S.; Landi, V.; Di Lorenzo, P.; Lasagna, E.; Ciocchetti, M.; Şahin, E.; Mugnai, C.; Panella, F.; Sarti, F.M. A microsatellites-based survey on the genetic structure of two Italian local chicken breeds. Ital. J. Anim. Sci. 2011, 10, e39. [Google Scholar] [CrossRef]
- Dorji, N.; Daungjinda, M.; Phasuk, Y. Genetic characterization of Thai Indigenous chickens compared with commercial lines. Trop. Anim. Health Prod. 2011, 43, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Eltanany, M.; Philipp, U.; Weigend, S.; Distl, O. Genetic diversity of ten Egyptian chicken strains using 29 microsatellite markers. Anim. Genet. 2011, 42, 666–669. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef]
- Dávila, S.G.; Gil, M.G.; Resino-Talaván, P.; Campo, J.L. Evaluation of diversity between different Spanish chicken breeds, a tester line, and a White Leghorn population based on microsatellite markers. Poult. Sci. 2009, 88, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.; Núñez, L.; Ramírez, L.; Rodríguez, I.; Florentín, A.; Álvarez, R.; Martínez-López, O.R. Biodiversidad de ecotipos de gallinas locales del Chaco Central y humedales del Ñeembucú. Actas Iberoam. Conserv. Anim. 2015, 6, 506–516. [Google Scholar]
- Lyimo, C.M.; Weigend, A.; Msoffe, P.L.; Eding, H.; Simianer, H.; Weigend, S. Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Anim. Genet. 2014, 45, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, G.; Templeton, A.R.; Zarmi, Y.; Bar-David, S. Allelic richness following population founding events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 2014, 9, e115203. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Yıldız, M.A. Genetic Diversity among Turkish Native Chickens, Denizli and Gerze, Estimated by Microsatellite Markers. Biochem. Genet. 2008, 46, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Pomboza-Tamaquiza, P.; Guerrero-López, R.; Guevara-Freire, D.; Rivera, V.; Pomboza-Tamaquiza, P.; Guerrero-López, R.; Guevara-Freire, D.; Rivera, V. Granjas avícolas y autosuficiencia de maíz y soya: Caso Tungurahua-Ecuador. Estud. Soc. (Hermosillo Son.) 2018, 28, 1–25. [Google Scholar] [CrossRef]
- Nassiry, M.R.; Javanmard, A.; Tohidi, R. Application of statistical procedures for analysis of genetic diversity in domestic animal populations. Am. J. Anim. Vet. Sci. 2009, 4, 136–141. [Google Scholar] [CrossRef]
- Wilkinson, S.; Wiener, P.; Teverson, D.; Haley, C.S.; Hocking, P.M. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Anim. Genet. 2012, 43, 552–563. [Google Scholar] [CrossRef]
- Seligmann, L.J. The Chicken in Andean History and Myth—The Quechua Concept of Wallpa. Ethnohistory 1987, 34, 139–170. [Google Scholar] [CrossRef]
- Gama, L.T.; Martinez, A.M.; Ginja, C.; Cañon, J.; Martin-Burriel, I.; Revidatti, M.A.; Ribeiro, M.N.; Jordana, J.; Cortes, O.; Sevane, N.; et al. Genetic diversity and structure of iberoamerican livestock breeds. In Advances in Animal Health, Medicine and Production; Freitas Duarte, A., Lopes da Costa, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 52–68. [Google Scholar] [CrossRef]
Breed/Population Name | Breed Acronym | Sample Size | Breed Origin | Utility | Source |
---|---|---|---|---|---|
Rustipollos | RUP | 50 | Paraguay | Dual purpose | This study |
Cobb broiler | COB | 25 | United States | Meat | This study |
White Plymouth Rock | WPR | 12 | United States | Dual purpose | This study |
Brahma | BRH | 10 | China via USA | Dual purpose | This study |
Total | 97 | ||||
Criolla Pilaraneña | ECU | 70 | Ecuador | Dual purpose | [5] |
Caneluda do Catolé | CDC | 30 | Brazil | Dual purpose | [25] |
Canela Preta | CAP | 40 | Brazil | Dual purpose | [25] |
Lineage Pesadão | LPE | 30 | Brazil | Dual purpose | [25] |
Peloco | PEL | 30 | Brazil | Dual purpose | [25] |
Araucana | ARA | 47 | Chile | Dual purpose | [5] |
Andaluza Azul | AAZ | 50 | Spain | Eggs | [25] |
Combatiente Español | CES | 50 | Spain | Fighting | [25] |
Sureña | SUR | 30 | Spain | Dual purpose | [25] |
Pita Pinta Asturiana | PPA | 50 | Spain | Dual purpose | [25] |
Menorquina | MEN | 41 | Spain | Eggs | Unpublished |
Mallorquina | MLL | 50 | Spain | Dual purpose | [25] |
Ibicenca | IBI | 50 | Spain | Dual purpose | [25] |
Castellana Negra | CAN | 50 | Spain | Eggs | [25] |
Extremeña Azul | EAZ | 50 | Spain | Dual purpose | [25] |
Cornish Dark | COR | 26 | United Kingdom | Meat | [25] |
Leghorn | LEG | 40 | Italy | Eggs | [25] |
Nigerian | NIG | 70 | Nigeria | Dual purpose | [25] |
Total | 804 |
Breed/Population | MNA 1 (SD) | AR 2 (R 3) | Np 4 | HE 5 (SD) | HO 6 (SD) | dHWE 7 | FIS 8 |
---|---|---|---|---|---|---|---|
RUP | 3.31(1.04) | 2.80 (0.05) | 1 | 0.53 (0.03) | 0.50 (0.01) | 2 | 0.072 a |
ECU | 6.79 (3.43) | 3.80 (0.15) | 9 | 0.63 (0.03) | 0.53 (0.01) | 6 | 0.153 a |
CDC | 5.41 (2.61) | 3.83 (0.12) | 2 | 0.65 (0.03) | 0.62 (0.02) | 3 | 0.052 |
CAP | 5.72 (2.90) | 3.68 (0.15) | 2 | 0.62 (0.03) | 0.61 (0.01) | 2 | 0.026 |
LPE | 4.41 (2.01) | 3.43 (0.08) | 1 | 0.62 (0.02) | 0.62 (0.02) | 3 | 0.004 |
PEL | 4.86 (1.88) | 3.61 (0.14) | 3 | 0.62 (0.03) | 0.60 (0.02) | 2 | 0.029 |
ARA | 6.76 (3.77) | 4.22 (0.37) | 5 | 0.67 (0.03) | 0.57 (0.01) | 10 | 0.142 a |
AAZ | 4.72 (2.23 | 2.71 (0.05) | 1 | 0.43 (0.05) | 0.39 (0.01) | 9 | 0.077 a |
CES | 5.24 (2.59) | 2.88 (0.05) | 0 | 0.45 (0.04) | 0.40 (0.01) | 7 | 0.108 a |
SUR | 5.14 (2.50) | 3.62 (0.09) | 2 | 0.60 (0.03) | 0.54 (0.02) | 5 | 0.099 a |
PPA | 5.07 (2.19) | 3.41 (0.13) | 2 | 0.59 (0.03) | 0.48 (0.01) | 12 | 0.196 a |
MEN | 3.69 (1.51) | 2.76 (0.04) | 0 | 0.47 (0.04) | 0.43 (0.01) | 3 | 0.099 a |
MLL | 3.55(2.01) | 2.69 (0.06) | 1 | 0.46 (0.05) | 0.46 (0.01) | 1 | 0.000 a |
IBI | 5.52 (3.60) | 3.61 (0.10) | 2 | 0.60 (0.04) | 0.52 (0.01) | 7 | 0.135 a |
CAN | 4.97 (2.67) | 3.13 (0.07) | 0 | 0.53 (0.04) | 0.47 (0.01) | 5 | 0.110 a |
EAZ | 5.38 (2.72) | 3.56 (0.08) | 0 | 0.60 (0.03) | 0.52 (0.01) | 6 | 0.138 a |
COR | 4.66 (2.11) | 3.41 (0.18) | 1 | 0.57 (0.03) | 0.47 (0.02) | 2 | 0.182 a |
COB | 3.90 (1.40) | 3.10 (0.03) | 0 | 0.55 (0.03) | 0.55 (0.02) | 0 | 0.002 |
WPR | 2.69 (1.00) | 2.34 (0.02) | 0 | 0.39 (0.04) | 0.37 (0.03) | 0 | 0.041 |
BRH | 4.34 (1.80) | 3.98 (0.17) | 2 | 0.69 (0.03) | 0.63 (0.03) | 1 | 0.093 |
LEG | 3.17 (1.44) | 2.29 (0.10) | 0 | 0.39 (0.04) | 0.43 (0.01) | 10 | −0.112 |
NIG | 6.83 (3.78) | 3.66 (0.20) | 6 | 0.59 (0.03) | 0.53 (0.01) | 7 | 0.115 a |
Mean | 3.30 (0.11) | 0.56 (0.03) | 0.51 (0.02) |
Source of Variation | df | Sum of Squares | Variance Component | Variance (%) |
---|---|---|---|---|
Among populations | 21 | 3043.95 | 1.55 * | 17.25 |
Among individuals within populations | 954 | 7664.33 | 0.57 * | 6.37 |
Within individuals | 976 | 6719.50 | 6.88 * | 76.38 |
Total | 1273 | 17,427.78 | 9.01 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro Rojas, L.A.; Ceccobelli, S.; Gayozo, E.; Méndez Morán, N.; Marchegiani, S.; Martínez Martínez, A.; Camacho Vallejo, M.E.; Toalombo Vargas, P.A.; de Carvalho, D.A.; Pons Barro, A.L.; et al. Understanding the Genetic Variation and Structure of the Rustipollos Chicken Synthetic Population Locally Adapted to Paraguay: Opportunities for a Sustainable Chicken Productivity. Poultry 2024, 3, 224-238. https://doi.org/10.3390/poultry3030018
Castro Rojas LA, Ceccobelli S, Gayozo E, Méndez Morán N, Marchegiani S, Martínez Martínez A, Camacho Vallejo ME, Toalombo Vargas PA, de Carvalho DA, Pons Barro AL, et al. Understanding the Genetic Variation and Structure of the Rustipollos Chicken Synthetic Population Locally Adapted to Paraguay: Opportunities for a Sustainable Chicken Productivity. Poultry. 2024; 3(3):224-238. https://doi.org/10.3390/poultry3030018
Chicago/Turabian StyleCastro Rojas, Liz Aurora, Simone Ceccobelli, Elvio Gayozo, Natalia Méndez Morán, Sara Marchegiani, Amparo Martínez Martínez, María Esperanza Camacho Vallejo, Paula Alexandra Toalombo Vargas, Débora Araújo de Carvalho, Agueda Laura Pons Barro, and et al. 2024. "Understanding the Genetic Variation and Structure of the Rustipollos Chicken Synthetic Population Locally Adapted to Paraguay: Opportunities for a Sustainable Chicken Productivity" Poultry 3, no. 3: 224-238. https://doi.org/10.3390/poultry3030018
APA StyleCastro Rojas, L. A., Ceccobelli, S., Gayozo, E., Méndez Morán, N., Marchegiani, S., Martínez Martínez, A., Camacho Vallejo, M. E., Toalombo Vargas, P. A., de Carvalho, D. A., Pons Barro, A. L., Quirõz, J., Barriocanal, J. F., Ñumbay, M. T., & Lasagna, E. (2024). Understanding the Genetic Variation and Structure of the Rustipollos Chicken Synthetic Population Locally Adapted to Paraguay: Opportunities for a Sustainable Chicken Productivity. Poultry, 3(3), 224-238. https://doi.org/10.3390/poultry3030018