Evaluation of Egg Quality and Performance in Late-Lay Hens Fed Different Combinations of Copper, Manganese, and Zinc Complexed with Sulfate or Amino Acid Ion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Diet Analysis
2.3. Egg Production
2.4. Egg Quality
2.5. Mineral Analysis and Phosphorus Retention
2.6. Statistical Analysis
3. Results
3.1. Egg Production
3.2. Egg Quality
3.3. Mineral Excretion and Retention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mabe, I.; Rapp, C.; Bain, M.M.; Nys, Y. Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poult. Sci. 2003, 82, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhang, H.J.; Wu, S.G.; Wang, J.; Qi, G.H. Dietary manganese supplementation modulated mechanical and ultrastructural changes during eggshell formation in laying hens. Poult. Sci. 2017, 96, 2699–2707. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Hill, C.H. The interrelationship of dietary copper and amino oxidase in the formation of elastin. Biochem. Biophys. Res. Comm. 1966, 24, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.D. Shell membrane protein system in relation to lathyrogen toxicity and copper deficiency. World’s Poult. Sci. J. 1990, 46, 153–169. [Google Scholar]
- Baumgartner, S.; Brown, D.J.; Salevsky, E., Jr.; Leach, R.M. Copper deficiency in the laying hen. J. Nutr. 1978, 108, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.L. The nutritional relationships of manganese. J. Orthomol. Med. 1990, 5, 219–222. [Google Scholar]
- Dhande, R.R.; Suryawanshi, S.A.; Pandey, A.K. Seasonal changes in plasma calcium and inorganic phosphate levels in relation to parathyroid structure of the grey quail, Coturnix coturnix coturnix Linnaeus. J. Environ. Biol. 2006, 27, 123–128. [Google Scholar] [PubMed]
- Chen, Y.C.; Chen, T.C. Mineral utilization in layers as influenced by dietary oligofructose and inulin. Int. J. Poult. Sci. 2004, 3, 442–445. [Google Scholar]
- Wedekind, K.J.; Hortin, A.E.; Baker, D.H. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 1992, 70, 178–187. [Google Scholar] [CrossRef]
- Star, L.; van der Klis, J.D.; Rapp, C.; Ward, T.L. Bioavailability of organic and inorganic zinc sources in male broilers. Poult. Sci. 2012, 91, 3115–3120. [Google Scholar] [CrossRef]
- Moreng, R.E.; Balnave, D.; Zhang, D. Dietary zinc methionine effect on eggshell quality of hens drinking saline water. Poult. Sci. 1992, 71, 1163–1167. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Li, C.; Drackley, J.K.; Socha, M.T.; Loor, J.J. Supplementing Zn, Mn, and Cu from anio acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2015, 99, 1868–1883. [Google Scholar] [CrossRef]
- Federation of Animal Science Societies (FASS). Guide for the Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010. [Google Scholar]
- Khoshbin, M.R.; Vakili, R.; Tahmasbi, A.M. Manganese-methionine chelate improves the antioxidant activity, immune system and egg manganese enrichment in the aged laying hens. Vet. Med. Sci. 2023, 9, 217–225. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.M.; Yang, C.W.; Jiang, S.Z.; Huang, L.B.; Li, Y.; Zhang, X.; Jiao, N.; Yang, W.R. Low level of dietary organic trace elements improve the eggshell strength, trace element utilization, and intestinal function in late-phase laying hens. Front. Vet. Sci. 2022, 9, 903615. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Jeong, S.H.; Lim, S.J.; Cheon, S.N.; Kim, K.; Chun, J.; Jeon, J. Effect of organic or inorganic mineral premix in the diet on laying performance of aged laying hens and eggshell quality. Animals 2022, 12, 2378. [Google Scholar] [CrossRef]
- Mamdooh, A.M.; Goudarzi, S.M.; Saki, A.A.; Aliarabi, H. Various zinc sources and levels supplementation on performance, egg quality and blood parameters in laying hens. J. Livestock Sci. Technol. 2021, 9, 1–9. [Google Scholar]
- Qiu, J.L.; Zhou, Q.; Zhu, J.N.; Lu, X.T.; Liu, B.; Yu, D.Y.; Lin, G.; Ao, T.; Xu, J.M. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poult. Sci. 2020, 99, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.K.; Han, M.M.; Dong, Y.Y.; Miao, Z.Q.; Zhang, J.Z.; Song, X.Y.; Feng, Y.; Li, H.F.; Zhang, L.H.; Wei, Q.Y.; et al. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2020, 15, 100401. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, A.; Kalin, O.; Nys, Y.; Garcia-Ruiz, J.M. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. Br. Poult. Sci. 2002, 43, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Caston, L. Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Anim. Feed Sci. Technol. 2008, 142, 339–347. [Google Scholar] [CrossRef]
- Xiao, J.F.; Wu, S.G.; Zhang, H.J.; Yue, H.Y.; Wang, J.; Ji, F.; Qi, G.H. Bioefficacy comparison of organic manganese with inorganic manganese for eggshell quality in Hy-Line Brown laying hens. Poult. Sci. 2015, 94, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Junchang, C.; Ruangpanit, Y. Effects of organic zinc and manganese supplementation on eggshell quality and bone characteristic of laying hens during late laying cycle. Agr. Nat. Resour. 2023, 57, 145–152. [Google Scholar]
- Favero, A.; Vieira, S.L.; Angel, C.R.; Bess, F.; Cemin, H.S.; Ward, T.L. Reproductive performance of Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. J. Appl. Poult. Res. 2013, 22, 80–91. [Google Scholar] [CrossRef]
- Zarghi, H.; Hassanabadi, A.; Barzegar, N. Effect of organic and inorganic manganese supplementation on performance and eggshell quality in aged laying hens. Vet. Med. Sci. 2023, 9, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Medeiros-Ventura, W.R.L.; Rabello, C.B.V.; Barros, M.R.; Silva Junior, R.V.; Oliveira, H.B.; Faria, A.G.; Silva, A.F.; Soares, P.C.; Pereira, C.G.; Santos, M.J.B.; et al. Zinc, manganese, and copper amino acid complexes improve performance and bone characteristics of layer-type chicks under thermoneutral and cold stress conditions. Poult. Sci. 2020, 99, 5718–5727. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Role of zinc in bone formation and bone resorption. J. Trace Elements Exp. Med. 1998, 11, 119–135. [Google Scholar] [CrossRef]
- Banks, K.M.; Thompson, K.L.; Rush, J.K.; Applegate, T.J. Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult. Sci. 2004, 83, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Vohra, P.; Heil, J.R. Dietary interactions between Zn, Mn and Cu for turkey poults. Poult. Sci. 1969, 48, 1686–1691. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Lu, X.; Ma, L.; Hou, C.; He, J.; Liu, B.; Yu, D.; Lin, G.; Xu, J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. Asian-Australas. J. Anim. Sci. 2020, 33, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.M.; Vargas-Jurado, N.; Purdum, S.E. Prediction model for manure zinc excretion in laying hens. Poult. Sci. 2018, 97, 267–270. [Google Scholar] [CrossRef]
Ingredient | % | Nutrient Content | |||
---|---|---|---|---|---|
Corn | 59.75 | ME kcal/kg | 2860 | Fe, ppm | 66.57 |
Soybean Meal | 18.08 | Protein (%) | 15.58 | Zn, ppm | 33.20 |
Limestone | 7.92 | Crude Fat (%) | 6.02 | Mn, ppm | 11.96 |
Dried Distillers Grains | 5.00 | Crude Fiber (%) | 2.31 | Cu, ppm | 4.90 |
Soy Oil | 3.36 | Ca (%) | 4.50 | Se, ppm | 0.04 |
Oyster Shell | 3.00 | P (%) | 0.70 | I, ppm | 0.00 |
Biofos 16/21P | 1.78 | Arginine (%) | 0.83 | ||
Sodium Bicarbonate | 0.44 | Lysine (%) | 0.75 | ||
DL-Methionine, 98% | 0.19 | Valine (%) | 0.62 | ||
Lysine HCl | 0.15 | Threonine (%) | 0.52 | ||
Vitamin Premix * | 0.15 | Methionine (%) | 0.42 | ||
Salt | 0.10 | Cysteine (%) | 0.26 | ||
Hydrated Vitamin D3 | 0.05 | Tryptophan (%) | 0.14 | ||
L-Threonine, 98% | 0.04 |
Inorganic Sources | Amino Acid Ion Complexed Sources | |||||
---|---|---|---|---|---|---|
Treatment | CuSO4 (ppm) | MnSO4 (ppm) | ZnSO4 (ppm) | AAC Cu (ppm) | AAC Mn (ppm) | AAC Zn (ppm) |
Control | 20 | 40 | 40 | 0 | 0 | 0 |
AAC Cu | 0 | 40 | 40 | 20 | 0 | 0 |
AAC Mn | 20 | 0 | 40 | 0 | 40 | 0 |
AAC Zn | 20 | 40 | 0 | 0 | 0 | 40 |
AAC Cu + Mn | 0 | 0 | 40 | 20 | 40 | 0 |
AAC Mn + Zn | 20 | 0 | 0 | 0 | 40 | 40 |
AAC Zn + Cu | 0 | 40 | 0 | 20 | 0 | 40 |
Egg Weight (g) | Hen Day Egg Production (%) | Hen Placed Egg Production (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment * | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks |
Control | 58.14 | 58.40 b | 59.93 | 82.75 | 80.87 | 80.21 | 81.22 | 79.15 | 78.47 |
AAC Cu | 57.56 | 58.40 b | 59.59 | 79.95 | 79.41 | 79.21 | 79.95 | 78.04 | 77.51 |
AAC Mn | 58.22 | 59.23 ab | 61.25 | 82.38 | 83.99 | 83.39 | 81.48 | 80.58 | 79.52 |
AAC Zn | 58.44 | 59.06 ab | 59.81 | 85.82 | 78.34 | 78.94 | 85.82 | 78.41 | 77.35 |
AAC Cu + Mn | 56.66 | 57.48 b | 59.30 | 87.43 | 83.82 | 79.68 | 87.61 | 77.78 | 72.91 |
AAC Mn + Zn | 58.28 | 58.95 b | 59.98 | 85.10 | 81.48 | 84.82 | 84.71 | 79.79 | 81.11 |
AAC Zn + Cu | 58.70 | 60.80 a | 61.03 | 85.66 | 83.88 | 80.34 | 84.71 | 77.94 | 73.28 |
SEM | 0.18 | 0.23 | 0.27 | 0.83 | 0.91 | 0.95 | 0.85 | 1.04 | 1.14 |
Breaking Strength (g) | Shell Deformation (mm) | Shell Thickness (mm) | Shell Weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment * | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks |
Control | 3309.5 | 3534.5 | 3256.6 | 5.86 | 5.78 | 6.06 | 0.43 | 0.41 | 0.41 | 5.52 | 6.37 | 5.06 |
AAC Cu | 3382.7 | 3773.3 | 2979.9 | 5.80 | 5.88 | 5.85 | 0.41 | 0.42 | 0.40 | 5.56 | 6.19 | 5.24 |
AAC Mn | 3489.0 | 3655.8 | 3244.1 | 5.86 | 5.86 | 6.12 | 0.42 | 0.42 | 0.40 | 5.55 | 6.30 | 5.14 |
AAC Zn | 3204.8 | 3224.9 | 3150.5 | 5.93 | 6.53 | 6.06 | 0.40 | 0.40 | 0.42 | 5.40 | 5.97 | 5.09 |
AAC Cu + Mn | 3464.7 | 3284.8 | 3101.8 | 5.91 | 5.33 | 6.21 | 0.40 | 0.42 | 0.42 | 5.59 | 6.24 | 5.22 |
AAC Mn + Zn | 3282.1 | 3194.3 | 2768.7 | 5.89 | 5.97 | 6.13 | 0.42 | 0.42 | 0.40 | 5.52 | 6.10 | 5.38 |
AAC Zn + Cu | 3543.2 | 3469.1 | 3298.0 | 5.64 | 5.82 | 6.12 | 0.43 | 0.43 | 0.44 | 5.62 | 6.39 | 5.35 |
SEM | 77.0 | 82.4 | 73.9 | 0.04 | 0.15 | 0.04 | 0.00 | 0.00 | 0.01 | 0.06 | 0.10 | 0.06 |
Haugh Units | Specific Gravity | Vitelline Membrane Strength (g) | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment * | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks | 5 wks | 10 wks | 15 wks |
Control | 116.07 | 98.84 | 98.75 | 1.09 | 1.08 | 1.08 | 13.27 | 10.56 | 5.90 |
AAC Cu | 114.57 | 98.88 | 97.29 | 1.08 | 1.08 | 1.08 | 13.17 | 10.65 | 6.14 |
AAC Mn | 114.44 | 98.23 | 100.58 | 1.08 | 1.08 | 1.08 | 14.23 | 10.47 | 6.15 |
AAC Zn | 114.60 | 96.37 | 100.06 | 1.08 | 1.08 | 1.08 | 13.24 | 11.18 | 6.04 |
AAC Cu + Mn | 115.90 | 96.88 | 99.62 | 1.09 | 1.09 | 1.08 | 13.22 | 9.38 | 6.30 |
AAC Mn + Zn | 115.16 | 95.17 | 95.89 | 1.08 | 1.08 | 1.08 | 13.85 | 11.27 | 6.06 |
AAC Zn + Cu | 115.28 | 96.28 | 99.61 | 1.08 | 1.08 | 1.08 | 13.28 | 10.68 | 6.13 |
SEM | 0.38 | 0.65 | 0.63 | 0.00 | 0.00 | 0.00 | 0.23 | 0.31 | 0.07 |
Wk | Control | AAC Cu | AAC Mn | AAC Zn | AAC Cu + Mn | AAC Mn + Zn | AAC Zn + Cu | SEM | ||
---|---|---|---|---|---|---|---|---|---|---|
Cu (ppm) | Egg Shells | 10 | 1.83 | 1.97 | 2.16 | 2.83 | 2.60 | 1.97 | 2.65 | 0.16 |
15 | 1.50 | 1.72 | 1.65 | 1.66 | 1.72 | 1.68 | 1.50 | 0.05 | ||
Excreta | 10 | 28.30 b | 67.46 a | 31.92 b | 29.99 b | 63.83 a | 31.87 b | 62.17 a | 0.91 | |
15 | 29.18 b | 69.44 a | 23.07 b | 24.92 b | 65.77 a | 26.55 b | 69.40 a | 1.11 | ||
Mn (ppm) | Excreta | 10 | 350.61 c | 375.56 bc | 422.33 a | 346.05 c | 390.11 b | 354.00 c | 357.50 c | 3.78 |
15 | 371.16 a | 335.83 bc | 337.88 bc | 315.00 c | 350.66 ab | 338.88 bc | 306.24 c | 3.82 | ||
Zn (ppm) | Egg Shells | 10 | 2.19 | 2.49 | 2.49 | 3.13 | 2.46 | 2.10 | 2.80 | 0.11 |
15 | 1.89 | 2.70 | 1.67 | 2.11 | 1.99 | 1.77 | 2.01 | 0.09 | ||
Egg Contents | 10 | 13.48 | 13.46 | 13.58 | 13.04 | 13.47 | 13.18 | 12.87 | 0.19 | |
15 | 14.70 | 14.12 | 14.29 | 14.02 | 14.84 | 14.43 | 14.32 | 0.11 | ||
Excreta | 10 | 314.22 bc | 331.00 b | 366.78 a | 308.78 c | 330.61 b | 329.00 b | 324.50 bc | 2.45 | |
15 | 308.72 a | 296.78 abc | 284.06 c | 283.22 c | 292.39 bc | 292.72 bc | 303.94 ab | 2.09 | ||
Ca (ppm) | Egg Shells | 10 | 28.34 | 29.50 | 29.37 | 29.51 | 28.23 | 44.08 | 41.69 | 1.72 |
15 | 33.23 | 31.81 | 47.83 | 33.54 | 50.11 | 33.82 | 33.40 | 1.94 | ||
Egg Contents | 10 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.00 | |
15 | 0.08 | 0.08 | 0.07 | 0.07 | 0.08 | 0.08 | 0.07 | 0.00 | ||
Excreta | 10 | 10.78 ab | 9.94 c | 10.70 ab | 10.48 abc | 9.95 c | 10.31 bc | 10.95 a | 0.08 | |
15 | 10.40 | 10.24 | 10.46 | 10.32 | 10.53 | 10.31 | 10.03 | 0.07 | ||
P (ppm) | Egg Shells | 10 | 0.49 | 0.54 | 0.08 | 0.08 | 0.47 | 0.58 | 0.08 | 0.09 |
15 | 0.09 | 0.09 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.00 | ||
Egg Contents | 10 | 0.22 | 0.21 | 0.21 | 0.21 | 0.22 | 0.22 | 0.21 | 0.00 | |
15 | 0.23 | 0.22 | 0.23 | 0.22 | 0.23 | 0.23 | 0.22 | 0.00 | ||
Excreta | 10 | 1.89 a | 1.98 a | 1.74 b | 1.92 a | 1.96 a | 1.93 a | 1.90 a | 0.02 | |
15 | 2.17 | 2.13 | 2.07 | 2.12 | 2.17 | 2.07 | 2.16 | 0.02 | ||
P Retention (%) | 10 | 47.49 | 49.91 | 43.06 | 48.30 | 59.31 | 48.69 | 52.44 | 2.04 | |
15 | 38.03 | 34.89 | 41.25 | 27.48 | 38.22 | 27.42 | 33.13 | 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domel, J.R.; House, G.M.; Sobotik, E.B.; Archer, G.S. Evaluation of Egg Quality and Performance in Late-Lay Hens Fed Different Combinations of Copper, Manganese, and Zinc Complexed with Sulfate or Amino Acid Ion. Poultry 2024, 3, 36-46. https://doi.org/10.3390/poultry3010004
Domel JR, House GM, Sobotik EB, Archer GS. Evaluation of Egg Quality and Performance in Late-Lay Hens Fed Different Combinations of Copper, Manganese, and Zinc Complexed with Sulfate or Amino Acid Ion. Poultry. 2024; 3(1):36-46. https://doi.org/10.3390/poultry3010004
Chicago/Turabian StyleDomel, Jill R., Gabrielle M. House, Eric B. Sobotik, and Gregory S. Archer. 2024. "Evaluation of Egg Quality and Performance in Late-Lay Hens Fed Different Combinations of Copper, Manganese, and Zinc Complexed with Sulfate or Amino Acid Ion" Poultry 3, no. 1: 36-46. https://doi.org/10.3390/poultry3010004
APA StyleDomel, J. R., House, G. M., Sobotik, E. B., & Archer, G. S. (2024). Evaluation of Egg Quality and Performance in Late-Lay Hens Fed Different Combinations of Copper, Manganese, and Zinc Complexed with Sulfate or Amino Acid Ion. Poultry, 3(1), 36-46. https://doi.org/10.3390/poultry3010004