Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics and Procedures
2.2. Animals, Diet Composition and Experimental Design
2.3. Preparation of Aqueous and Cyclodextrin Extracts from Pomegranate and Onion Peels
2.4. Determination of Total Phenolic Content (TPC)
2.5. Determination of Antiradical Activity
2.6. Performance Parameters
2.7. Welfare Status
2.8. Carcass Characteristics, and Breast and Thigh Meat Composition and Oxidative Status
2.9. Protein Carbonyls
2.10. Determination of Meat Fatty Acids
2.11. Color Meat Evaluation
2.12. Statistical Analysis
3. Results
3.1. Total Phenolic Content and Antiradical Activity of Extracts
3.2. Performance Parameters
3.3. Welfare Status
3.4. Protein Carbonyls
3.5. Breast and Thigh Meat Composition
3.6. Determination of TBARS
3.7. Meat Fatty Acid Composition
3.8. Color Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Grashorn, M.A. Use of phytobiotics in broiler nutrition–an alternative to infeed antibiotics. J. Anim. Feed Sci. 2010, 19, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Gavriil, A.; Zilelidou, E.; Papadopoulos, A.-E.; Siderakou, D.; Kasiotis, K.M.; Haroutounian, S.A.; Gardeli, C.; Giannenas, I.; Skandamis, P.N. Evaluation of antimicrobial activities of plant aqueous extracts against Salmonella Typhimurium and their application to improve safety of pork meat. Sci. Rep. 2021, 11, 21971. [Google Scholar] [CrossRef] [PubMed]
- Kalaitsidis, K.; Sidiropoulou, E.; Tsiftsoglou, O.; Mourtzinos, I.; Moschakis, T.; Basdagianni, Z.; Vasilopoulos, S.; Chatzigavriel, S.; Lazari, D.; Giannenas, I. Effects of Cornus and Its Mixture with Oregano and Thyme Essential Oils on Dairy Sheep Performance and Milk, Yoghurt and Cheese Quality under Heat Stress. Animals 2021, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadou, K.; Krigas, N.; Lazari, D.; Maloupa, E. Sustainable use of mediterranean medicinal-aromatic plants. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Elsevier: London, UK, 2020; pp. 57–74. [Google Scholar]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2010, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.-Z.; Dersjant-Li, Y.; Giannenas, I. Application of aromatic plants and their extracts in diets of broiler chickens. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Elsevier: London, UK, 2020; pp. 159–185. [Google Scholar]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Santas, J.; Almajano, M.P.; Carbó, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int. J. Sci. Technol. 2010, 45, 403–409. [Google Scholar] [CrossRef]
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Elsevier: London, UK, 2020; pp. 19–31. [Google Scholar]
- Tashla, T.; Puvača, N.; Pelić, D.L.; Prodanović, R.; Bošković, J.; Ivanišević, D.; Jahić, M.; Mahmoud, O.; Giannenas, I.; Lević, J. Dietary medicinal plants enhance the chemical composition and quality of broiler chicken meat. JHVMS 2019, 70, 1823–1832. [Google Scholar] [CrossRef] [Green Version]
- Giannenas, I.; Tsinas, A.; Bartzanas, T.; Skoufos, I.; Tzora, A.; Karamoutsios, A. Oregano and sage essential oils improve antioxidant status of raw and cooked breast and thigh chicken meat: In vivo investigation of antioxidant constituents of oregano and sage on chicken breast and thigh meat. Agro Food Ind. Hi-Tech. 2016, 27, 24–27. [Google Scholar]
- Johanningsmeier, S.D.; Harris, G.K. Pomegranate as a Functional Food and Nutraceutical Source. Annu. Rev. Food Sci. Technol. 2011, 2, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.R.; Mun, H.-S.; Kim, Y.-J.; Yang, C.-J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Aditya, S.; Ahammed, M.; Jang, S.H.; Ohh, S.J. Effects of dietary onion (Allium cepa) extract supplementation on performance, apparent total tract retention of nutrients, blood profile and meat quality of broiler chicks. Asian-Australas. J. Anim. Sci. 2017, 30, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourtzinos, I.; Salta, F.; Yannakopoulou, K.; Chiou, A.; Karathanos, V.T. Encapsulation of Olive Leaf Extract in β-Cyclodextrin. J. Agric. Food Chem. 2007, 55, 8088–8094. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, A.C.; Igoumenidis, P.E.; Mourtzinos, I.; Yannakopoulou, K.; Karathanos, V.T. Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chem. 2017, 214, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. ROSS Nutrition Specifications; Aviagen: Huntsville, AL, USA, 2019. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventios, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Welfare Quality, R. Welfare Quality R Assessment Protocol for Poultry (Broilers, Laying Hens); Welfare Quality R Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- AHPA. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Brauer-Vigoderis, R.; Ferreira-Tinôco, I.D.F.; Pandorfi, H.; Bastos-Cordeiro, M.; de Souza-Júnior, J.P.; de Carvalho-Guimarães, M.C. Effect of heating systems in litter quality in broiler facilities in winter conditions. Dyna 2014, 81, 36–40. [Google Scholar] [CrossRef]
- Anderson, S.; Aldana, S.; Beggs, M.; Birkey, J.; Conquest, A.; Conway, R.; Hemminger, T.; Herrick, J.; Hurley, C.; Ionita, C.; et al. Determination of Fat, Moisture, and Protein in Meat and Meat Products by Using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: Collaborative Study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- Ahn, D.U.; Olson, D.G.; Jo, C.; Love, J.; Jin, S.K. Volatiles Production and Lipid Oxidation in Irradiated Cooked Sausage as Related to Packaging and Storage. J. Food Sci. 1999, 64, 226–229. [Google Scholar] [CrossRef]
- Patsoukis, N.; Zervoudakis, G.; Panagopoulos, N.T.; Georgiou, C.D.; Angelatou, F.; Matsokis, N.A. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci. Lett. 2004, 357, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef] [Green Version]
- IDRE. G*POWER. Available online: https://stats.idre.ucla.edu/other/gpower/ (accessed on 2 February 2021).
- Akuru, E.A.; Mpendulo, C.T.; Oyeagu, C.E.; Nantapo, C.W.T. Pomegranate (Punica granatum L.) peel powder meal supplementation in broilers: Effect on growth performance, digestibility, carcase and organ weights, serum and some meat antioxidant enzyme biomarkers. Ital. J. Anim. Sci. 2021, 20, 119–131. [Google Scholar] [CrossRef]
- Baset, S.A.; Ashour, E.A.; El-Hack, M.E.A.; El-Mekkawy, M.M. Effect of different levels of pomegranate peel powder and probiotic supplementation on growth, carcass traits, blood serum metabolites, antioxidant status and meat quality of broilers. Anim. Biotechnol. 2020, 1–11. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000574208300001 (accessed on 9 January 2022). [CrossRef] [PubMed]
- Bostami, A.B.M.R.; Ahmed, S.T.; Islam, M.M.; Mun, H.S.; Ko, S.S.; Kim, S.; Yang, C.J. Growth performance, fecal noxious gas emission and economic efficacy in broilers fed fermented pomegranate byproducts as residue of fruit industry. Int. J. Adv. Res. 2015, 3, 102–114. [Google Scholar]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef]
- Lee, K.-W.; Everts, H.; Kappert, H.J.; Beynen, A.C. Addition of β-ionone to the diet fails to affect growth performance in female broiler chickens. Anim. Feed Sci. Technol. 2003, 106, 219–223. [Google Scholar] [CrossRef]
- An, B.K.; Kim, J.Y.; Oh, S.T.; Kang, C.W.; Cho, S.; Kim, S.K. Effects of onion extracts on growth performance, carcass characteristics and blood profiles of white mini broilers. Asian-Australas. J. Anim. Sci. 2015, 28, 247. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.E.; Anthon, G.E.; Barrett, D.M. Onion Cells after High Pressure and Thermal Processing: Comparison of Membrane Integrity Changes Using Different Analytical Methods and Impact on Tissue Texture. J. Food Sci. 2010, 75, E426–E432. [Google Scholar] [CrossRef]
- Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Márquez-Molina, O.; Rivas-Caceres, R.R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechnol. 2020, 1–23. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000555171500001 (accessed on 9 January 2022). [CrossRef] [PubMed]
- Abbas, R.Z.; Iqbal, Z.; Khan, M.N.; Zafar, M.A.; Zia, M.A. Anticoccidial activity of Curcuma longa L. in broilers. Braz. Arch. Biol. Technol. 2010, 53, 63–67. [Google Scholar] [CrossRef]
- Mench, J.; De Jong, I.; Butterworh, A.; Raj, M.; Berg, L. Broiler Chickens: Welfare in Practice; 5m Books Ltd.: South Yorkshire, UK, 2021. [Google Scholar]
- Eichner, G.; Vieira, S.L.; Torres, C.A.; Coneglian, J.L.B.; Freitas, D.M.; Oyarzabal, O.A. Litter Moisture and Footpad Dermatitis as Affected by Diets Formulated on an All-Vegetable Basis or Having the Inclusion of Poultry By-Product. J. Appl. Poult. Res. 2007, 16, 344–350. [Google Scholar] [CrossRef]
- Collett, S.R. Nutrition and wet litter problems in poultry. Anim. Feed Sci. Technol. 2012, 173, 65–75. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Ahn, J.; Grün, I.U.; Mustapha, A. Antimicrobial and Antioxidant Activities of Natural Extracts In Vitro and in Ground Beef. J. Food Prot. 2004, 67, 148–155. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Fernández-Ginés, J.M.; Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Meat products as functional foods: A review. J. Food Sci. 2005, 70, 37–43. [Google Scholar] [CrossRef]
- Cui, Y.-M.; Wang, J.; Lu, W.; Zhang, H.-J.; Wu, S.-G.; Qi, G.-H. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef]
- Garcia, R.G.; de Freitas, L.W.; Schwingel, A.W.; Farias, R.M.; Caldara, F.R.; Gabriel, A.M.A.; Almeida Paz, I.C.L. Incidence and physical properties of PSE chicken meat in a commercial processing plant. Braz. J. Poult. Sci. 2010, 12, 233–237. [Google Scholar] [CrossRef]
- Getry, J.G.; McGlone, J.J.; Miller, M.F.; Blanton, J.R., Jr. Environmental effects on pig performance, meat quality, and muscle characteristics. J. Anim. Sci. 2004, 82, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.T.; Ciou, J.Y.; Chen, C.L.; Yu, B. Effect of Echinacea purpurea L. on oxidative status and meat quality in Arbor Acres broilers. J. Sci. Food Agric. 2013, 93, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yeh, H.-Y.; Bowker, B.; Zhuang, H. Effects of different antioxidants on quality of meat patties treated with in-package cold plasma. Innov. Food Sci. Emerg. Technol. 2021, 70, 102690. [Google Scholar] [CrossRef]
- Castaneda, M.P.; Hirschler, E.M.; Sams, A.R. Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poult. Sci. 2005, 84, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Ramiah, S.K.; Zulkifli, I.; Rahim, N.A.A.; Ebrahimi, M.; Men, G.Y. Effects of two herbal extracts and virginiamycin supplementation on growth performance, intestinal microflora population and fatty acid composition in broiler chickens. Asian Australas. J. Anim. Sci. 2014, 27, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Yuan, Y.; Cui, L.; Wang, Z.; Yue, T. Cyclodextrin-assisted extraction of phenolic compounds: Current research and future prospects. Trends Food Sci. Technol. 2018, 79, 19–27. [Google Scholar] [CrossRef]
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2018, 17, 386–395. [Google Scholar] [CrossRef] [Green Version]
Starter | Grower | Finisher | |
---|---|---|---|
Ingredients (%) | Days 1–14 | Days 15–28 | Days 29–35 |
Maize | 55.50 | 60.00 | 61.00 |
Soybean meal | 35.77 | 30.70 | 28.62 |
Soybean oil | 3.50 | 3.50 | 4.50 |
Palm fat | - | 1.00 | 1.50 |
Calcium phosphate | 1.46 | 1.33 | 1.28 |
Limestone (Calcium carbonate) | 1.86 | 1.68 | 1.53 |
Salt | 0.28 | 0.23 | 0.23 |
Sodium carbonate | 0.21 | 0.21 | 0.19 |
L-Lysine | 0.41 | 0.40 | 0.35 |
DL-Methionine | 0.39 | 0.35 | 0.31 |
L-Threonine | 0.22 | 0.21 | 0.15 |
L-Valine | 0.15 | 0.14 | 0.09 |
Vitamin, mineral and enzyme premix 1 | 0.25 | 0.25 | 0.25 |
Total (kg) | 100.00 | 100.00 | 100.00 |
Calculated Analysis (As fed basis) M. Energy 2, Kcal/kg | 3000 | 3070 | 3150 |
Moisture, % | 10.15 | 10.55 | 11.14 |
Crude protein, % | 22.00 | 21.00 | 20.00 |
Crude fiber, % | 2.85 | 2.65 | 2.55 |
Crude fat, % | 4.84 | 6.11 | 6.65 |
Ash, % | 6.12 | 5.65 | 5.58 |
Total Lysine, % | 1.41 | 1.28 | 1.15 |
Total Methionine+Cystine, % | 1.08 | 0.99 | 0.92 |
Methionine, % | 0.73 | 0.67 | 0.62 |
Threonine, % | 0.98 | 0.89 | 0.79 |
Tryptophan, % | 0.28 | 0.25 | 0.24 |
Valine, % | 1.10 | 1.02 | 0.92 |
Total NSPs 3, % | 9.5 | 7.5 | 6.5 |
Calcium, % | 0.99 | 0.93 | 0.85 |
Total phosphorus, % | 0.71 | 0.65 | 0.62 |
Sodium, % | 0.24 | 0.23 | 0.22 |
Chloride, % | 0.24 | 0.23 | 0.22 |
Plant Material (Dried and Ground Form) | Solvent | Final Extract |
---|---|---|
50 g pomegranate peels 50 g onion peels | 1000 mL aqueous β-CD solution (1.85 mg/mL) | 1000 mL (500 mL pomegranate-peel extract and 500 mL onion-peel extract) |
50 g pomegranate peels 50 g onion peels | 1000 mL double distilled water | 1000 mL (500 mL pomegranate-peel extract and 500 mL onion-peel extract) |
Live Body Weight (g) | Control 1 | POM-ON-AQ 1 | POM-ON-CD 1 | SEM 2 | p Value |
---|---|---|---|---|---|
Day 1 | 46.38 | 46.14 | 46.39 | 4.4 | 0.973 |
Day 10 | 365.32 | 364.37 | 347.12 | 49.64 | 0.261 |
Day 24 | 1404.5 | 1420.37 | 1379.72 | 125.91 | 0.455 |
Day 35 | 2287.75 | 2268.75 | 2267.25 | 246.49 | 0.943 |
Feed Intake per Chicken (g) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Days 1–10 | 381.10 | 389.05 | 382.10 | 31.18 | 0.572 |
Days 11–24 | 1746.97 | 1797.57 | 1853.72 | 194.81 | 0.065 |
Days 25–35 | 2116.85 | 2168.32 | 2199.12 | 426.65 | 0.766 |
Days 1–35 | 4244.92 | 4354.95 | 4354.95 | 499.89 | 0.325 |
Body Weight Gain (g) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Days 1–10 | 318.94 | 303.67 | 305.75 | 7.06 | 0.677 |
Days 11–24 | 1039.17 | 1079.12 | 1038.42 | 13.26 | 0.395 |
Days 25–35 | 883.25 | 835.20 | 885.55 | 24.32 | 0.678 |
Days 1–35 | 2241.37 | 2217.99 | 2229.73 | 25.15 | 0.942 |
Feed Conversion Ratio (g Feed/g Weight Gain) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Days 1–10 | 1.195 | 1.225 | 1.276 | 0.024 | 0.432 |
Days 11–24 | 1.683 | 1.709 | 1.798 | 0.034 | 0.405 |
Days 25–35 | 2.407 | 2.562 | 2.496 | 0.060 | 0.627 |
Days 1–35 | 1.895 | 1.959 | 2.000 | 0.027 | 0.303 |
Litter Dry Matter (%) | Control 1 | POM-ON-AQ 1 | POM-ON-CD 1 | SEM 2 | p Value |
---|---|---|---|---|---|
Day 10 | 64.687 | 64.662 | 66.162 | 0.630 | 0.559 |
Day 24 | 74.912 | 75.075 | 74.025 | 0.489 | 0.661 |
Day 35 | 75.012 | 75.725 | 74.412 | 0.835 | 0.827 |
Litter Moisture | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 10 | 34.750 | 35.725 | 34.462 | 0.412 | 0.444 |
Day 24 | 23.762 b | 27.487 a | 24.700 b | 0.537 | 0.007 |
Day 35 | 25.600 | 26.437 | 24.375 | 0.785 | 0.580 |
Litter Score | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 10 | 1.312 | 1.500 | 1.500 | 0.091 | 0.649 |
Day 24 | 1.250 | 1.187 | 1.250 | 0.060 | 0.895 |
Day 35 | 1.062 | 1.187 | 1.125 | 0.054 | 0.662 |
PD 1 Score | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 | SEM 3 | p Value |
---|---|---|---|---|---|
Day 10 | 0.187 | 0.687 | 0.437 | 0.096 | 0.104 |
Day 24 | 0.312 | 0.187 | 0.312 | 0.073 | 0.743 |
Day 35 | 0.937 | 0.500 | 0.937 | 0.123 | 0.259 |
Diarrhea Score 4 | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 10 | 1.750 | 1.500 | 1.937 | 0.120 | 0.345 |
Feather Score 1 | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 | SEM 3 | p Value |
---|---|---|---|---|---|
Day 10 | 2.687 | 2.687 | 2.625 | 0.083 | 0.944 |
Day 24 | 2.750 | 2.875 | 3.000 | 0.045 | 0.071 |
Day 35 | 2.750 | 2.687 | 2.750 | 0.060 | 0.895 |
Fecal Score 1 | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 | SEM 3 | p Value |
---|---|---|---|---|---|
Day 10 | 1.750 | 1.500 | 1.937 | 0.089 | 0.442 |
Day 24 | 1.125 | 1.375 | 1.125 | 0.089 | 0.526 |
Day 35 | 1.437 | 1.187 | 1.125 | 0.073 | 0.191 |
Fecal Litter Moisture (%) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 10 | 22.993 | 23.175 | 23.375 | 0.156 | 0.629 |
Day 24 | 23.612 | 22.306 | 22.818 | 0.405 | 0.435 |
Day 35 | 21.131 | 20.700 | 20.956 | 0.321 | 0.870 |
Spleen Weight (g) | Control 1 | POM-ON-AQ 1 | POM-ON-CD 1 | SEM 2 | p Value |
---|---|---|---|---|---|
2.331 | 2.355 | 2.066 | 0.090 | 0.368 | |
Bursa Weight (g) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
2.273 | 2.307 | 2.298 | 0.029 | 0.898 | |
Thymus Weight (g) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
1.418 | 1.440 | 1.377 | 0.036 | 0.788 |
Litter NH3 | Control 1 | POM-ON-AQ 1 | POM-ON-CD 1 | SEM 2 | p Value |
---|---|---|---|---|---|
Day 10 | 1.186 | 1.186 | 1.190 | 0.009 | 0.985 |
Day 24 | 1.130 b | 1.168 a | 1.150 ab | 0.006 | 0.042 |
Day 35 | 1.213 | 1.201 | 1.211 | 0.010 | 0.887 |
Carcass Yield (g) | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 | SEM 3 | p Value |
---|---|---|---|---|---|
Day 35 | 1907.31 | 1906.05 | 2014.96 | 21.77 | 0.057 |
Wooden Breast Score 1 | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 35 | 0.375 | 0.437 | 0.250 | 0.101 | 0.763 |
White Stripping Score 1 | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 35 | 0.562 | 0.500 | 0.875 | 0.082 | 0.137 |
Breast Meat | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 | SEM 2 | p Value |
---|---|---|---|---|---|
Moisture % | 73.412 b | 77.087 a | 74.050 b | 0.397 | <0.001 |
Protein % | 24.000 | 24.100 | 24.325 | 0.167 | 0.738 |
Fat % | 1.696 | 1.180 | 1.288 | 0.119 | 0.182 |
Thigh Meat | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Moisture % | 74.766 | 74.446 | 74.833 | 0.133 | 0.469 |
Protein % | 20.322 b | 21.561 a | 21.530 a | 0.161 | <0.001 |
Fat % | 4.206 a | 2.858 b | 2.750 b | 0.133 | <0.001 |
Breast Meat TBARS (ng/g of Samle) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 1 | 0.065 a | 0.045 c | 0.048 b | 0.001 | <0.001 |
Day 3 | 0.067 | 0.033 | 0.049 | 0.012 | 0.542 |
Thigh Meat TBARS (ng/g of Samle) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
Day 1 | 0.087 a | 0.059 c | 0.075 b | 0.003 | <0.001 |
Day 3 | 0.025 b | 0.043 a | 0.024 b | 0.002 | <0.001 |
Breast Meat Protein Carbonyls (nmol/mg of Samle) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
0.421 b | 0.168 c | 0.582 a | 0.037 | <0.001 | |
Thigh Meat Protein Carbonyls (nmol/mg of Samle) | Control | POM-ON-AQ | POM-ON-CD | SEM | p Value |
0.273 b | 0.217 b | 0.735 a | 0.054 | <0.001 |
Fatty Acid | Control 1,2,3 | POM-ON-AQ 1,2,3 | POM-ON-CD 1,2,3 |
---|---|---|---|
Myristic (C14:0) | 0.45 ± 0.05 b | 0.53 ± 0.01 a | 0.51 ± 0.00 a |
Palmitic (C16:0) | 22.28 ± 0.15 b | 23.34 ± 0.16 a | 22.22 ± 0.20 b |
Palmitoleic (C16:1 cis) | 0.38 ± 0.02 c | 2.01 ± 0.02 b | 3.45 ± 0.03 a |
Heptadecanoic (C17:0) | 0.17 ± 0.03 b | 0.20 ± 0.03 a | 0.20 ± 0.01 a |
Stearic (C18:0) | 11.84 ± 0.01 a | 10.95 ± 0.02 b | 6.90 ± 0.90 c |
Oleic (C18:1 cis ω9) | 26.36 ± 0.02 b | 25.16 ± 0.13 c | 30.08 ±0.27 a |
Linoleic (C18:2 cis ω6) | 25.93 ±0.03 b | 25.48 ± 0.33 b | 29.54 ± 0.31 a |
Arachidic (C20:0) | 0.11 ± 0.01 b | 0.14 ± 0.02 b | 0.22 ± 0.02 a |
γ-Linolenic (C18:3 cis ω6) | 1.44 ± 0.03 b | 1.42 ± 0.02 b | 2.30 ± 0.03 a |
Linolenic (C18:3 trans ω3) | 0.35 ± 0.02 a | 0.32 ± 0.01 a | 0.31 ± 0.02 a |
Heneicosanoic (C21:0) | 1.02 ± 0.01 a | 1.17 ± 0.01 a | 0.55 ± 0.03b |
cis-11,14-Eicosadienoic (C20:2 cis ω6) | 0.17 ± 0.02 a | 0.15 ± 0.00 a | 0.08 ± 0.02 b |
Behenic (C22:0) | 0.92 ± 0.05 a | 1.03 ± 0.01 a | 0.46 ± 0.00 b |
cis-8,11,14-Eicosatrienoate (C20:3 cis ω6) | 6.26 ± 0.09 a | 5.54 ± 0.26 b | 2.31 ±0.03 c |
Erucic (C22:1 cis ω9) | 0.19 ± 0.03 a | 0.16 ± 0.04 a | 0.08 ± 0.03 b |
Arachidonic (C20:4 cis ω6) | 0.26 ± 0.01 a | 0.25 ± 0.00 a | 0.10 ± 0.01 b |
Lignoceric (C24:0) | 0.21 ± 0.01 b | 0.32 ± 0.00 a | 0.11 ± 0.01 c |
Nervonic (C24:1 cis ω9) | 1.01 ± 0.02 a | 1.08 ± 0.05 a | 0.38 ± 0.09 b |
cis-4,7,10,13,16,19-Docosahexaenoic (C22:6 cis ω3) | 0.64 ± 0.10 b | 0.76 ± 0.00 a | 0.21 ± 0.05 c |
∑SFA 4 | 37.00 ± 0.14 a | 37.80 ± 0.12 a | 31.15 ± 0.68 b |
∑MUFA 5 | 27.94 ± 0.15 c | 28.50 ± 0.25 b | 33.99 ± 0.31 a |
∑PUFA 6 | 35.05 ± 0.06 a | 34.02 ± 0.24 b | 34.86 ± 0.37 b |
∑n-3 7 | 0.99 ± 0.02 a,b | 1.08 ± 0.15 a | 0.52 ± 0.02 b |
∑n-6 8 | 8.13 ± 0.03 a | 7.37 ± 0.25 b | 4.79 ± 0.05 c |
PUFA/SFA | 0.95 ± 0.00 a | 0.90 ± 0.01 a | 1.12±0.04 a |
n-6/n-3 | 8.19 ± 0.17 a | 6.87 ± 0.65 b | 9.19 ± 0.06 a |
H/H 9 | 2.40 ± 0.05 a | 2.22 ± 0.03 a | 2.74 ± 0.04 a |
Fatty Acid | Control 1,2,3 | POM-ON-AQ 1,2,3 | POM-ON-CD 1,2,3 |
---|---|---|---|
Myristic (C14:0) | 0.54 ± 0.02 a | 0.52 ± 0.03 a | 0.48 ± 0.05 a |
Myristolei acid (C14:1) | 0.13 ± 0.05 a | 0.09 ± 0.01 a | 0.07 ± 0.01 a |
Palmitic (C16:0) | 22.00 ± 0.38 b | 23.75 ± 1.87a | 20.91 ± 0.25 c |
Palmitoleic (C16:1 cis) | 4.31 ± 0.06 a | 3.80 ± 0.11 b | 1.90 ± 1.41 c |
Heptadecanoic (C17:0) | 0.16 ± 0.03 a | 0.18 ± 0.01 a | 0.20 ± 0.03 a |
Stearic (C18:0) | 11.76 ± 0.91 a | 8.61 ± 0.31 c | 9.14 ± 0.12 b |
Oleic (C18:1 cis ω9) | 30.37 ± 0.42 b | 30.51 ± 1.92 b | 31.65 ± 0.72 a |
Linoleic (C18:2 cis ω6) | 25.85 ± 0.51 b | 26.90 ± 0.85 b | 28.57 ± 0.38 a |
Arachidic (C20:0) | 0.19 ±0.01 a | 0.19 ± 0.03 a | 0.17 ± 0.02 a |
g-Linolenic (C18:3 cis ω6) | 2.12 ±0.04 a | 2.08 ± 0.08 a | 1.85 ± 0.03 b |
Linolenic (C18:3 trans ω3) | 0.37 ± 0.04 a | 0.32 ± 0.03 b | 0.33 ± 0.05 b |
Heneicosanoic (C21:0) | 0.36 ± 0.03 c | 0.47 ± 0.05 b | 0.58 ± 0.07 a |
Behenic (C22:0) | 0.26 ± 0.07 c | 0.34 ± 0.03 b | 0.46 ± 0.05 a |
cis-8,11,14-Eicosatrienoate (C20:3 cis ω6) | 1.09 ± 0.05 b | 1.53 ± 0.09 b | 2.58 ± 0.07 a |
Nervonic (C24:1 cis ω9) | 0.21 ± 0.05 c | 0.32 ±0.03 b | 0.47 ± 0.09 a |
cis-4,7,10,13,16,19-Docosahexaenoic (C22:6 cis ω3) | 0.11 ± 0.05 b | 0.16 ±0.03 b | 0.32 ± 0.07 a |
∑SFA 4 | 35.28 ± 0.64 a | 34.06 ± 2.03 b | 31.94 ± 0.39 c |
∑MUFA 5 | 35.021 ± 0.39 a | 34.74 ± 1.51 b | 34.09 ± 0.83 b |
∑PUFA 6 | 29.70 ± 0.55 b | 31.21 ± 0.64 b | 33.97 ± 0.44 a |
∑n3 7 | 0.48 ± 0.04 b | 0.48 ± 0.02 b | 0.65 ± 0.07 a |
∑n6 8 | 3.36 ± 0.07 b | 3.83 ± 0.21 b | 4.75 ± 0.06 a |
PUFA/SFA | 0.84 ± 0.05 b | 0.92 ± 0.06 b | 1.06 ± 0.09 a |
n6/n3 | 7.05 ± 0.59 b | 7.99 ± 0.22 a | 7.33 ± 0.07 b |
H/H9 | 2.60 ± 0.05 b | 2.47 ± 0.27 b | 2.92 ± 0.05 a |
Color Parameters | Control 2 | POM-ON-AQ 2 | POM-ON-CD 2 |
---|---|---|---|
Breast Meat | |||
L* | 41.46 ± 0.7 c1 | 42.45 ± 0.20 b | 44.77 ± 0.81 a |
a* | 3.55 ± 0.35 b | 4.27 ± 0.11 a | 3.00 ± 0.15 c |
b* | 5.81 ± 0.05 c | 6.44 ± 0.12 b | 7.94 ± 0.31 a |
Thigh Meat | |||
L* | 40.76 ± 0.19 c | 42.54 ± 0.30 a | 41.34 ± 0.20 b |
a* | 3.83 ± 0.06 c | 6.77 ± 0.11 a | 4.78 ± 0.12 b |
b* | 5.81 ± 0.04 c | 9.70 ± 0.15 a | 7.62 ± 0.36 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilopoulos, S.; Dokou, S.; Papadopoulos, G.A.; Savvidou, S.; Christaki, S.; Kyriakoudi, A.; Dotas, V.; Tsiouris, V.; Bonos, E.; Skoufos, I.; et al. Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics. Poultry 2022, 1, 74-93. https://doi.org/10.3390/poultry1020008
Vasilopoulos S, Dokou S, Papadopoulos GA, Savvidou S, Christaki S, Kyriakoudi A, Dotas V, Tsiouris V, Bonos E, Skoufos I, et al. Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics. Poultry. 2022; 1(2):74-93. https://doi.org/10.3390/poultry1020008
Chicago/Turabian StyleVasilopoulos, Stelios, Stella Dokou, Georgios A. Papadopoulos, Soumela Savvidou, Stamatia Christaki, Anastasia Kyriakoudi, Vassilios Dotas, Vasilios Tsiouris, Eleftherios Bonos, Ioannis Skoufos, and et al. 2022. "Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics" Poultry 1, no. 2: 74-93. https://doi.org/10.3390/poultry1020008
APA StyleVasilopoulos, S., Dokou, S., Papadopoulos, G. A., Savvidou, S., Christaki, S., Kyriakoudi, A., Dotas, V., Tsiouris, V., Bonos, E., Skoufos, I., Mourtzinos, I., & Giannenas, I. (2022). Dietary Supplementation with Pomegranate and Onion Aqueous and Cyclodextrin Encapsulated Extracts Affects Broiler Performance Parameters, Welfare and Meat Characteristics. Poultry, 1(2), 74-93. https://doi.org/10.3390/poultry1020008