Effect of Pre-Treating Dietary Moringa oleifera Leaf Powder with Fibrolytic Enzymes on Physiological and Meat Quality Parameters in Jumbo Quail
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Resources
2.2. Enzyme Treatment of Moringa and Analyses
2.3. Diet Formulation
2.4. Ethics Statement and Feeding Trial
2.5. Slaughtering Procedure and Blood Analyses
2.6. Carcass Characteristics and Internal Organs
2.7. Meat Quality Parameters
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mnisi, C.M.; Mlambo, V. Growth performance, haematology, serum biochemistry and meat quality parameters of Japanese quails (Coturnix coturnix japonica) fed canola powder-based diets. Anim. Nutr. 2018, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Marareni, M.; Mnisi, C.M. Growth performance, serum biochemistry and meat quality traits of Jumbo quails fed with mopane worm (Imbrasia belina) meal-containing diets. Vet. Anim. Sci. 2020, 10, 100141. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, E.; Animut, G.; Urge, M.; Dessie, T. Effect of replacing Moringa oleifera leaf meal for soybean meal in broiler ration. Global J. Sci. Front. Res. Agric. Biol. 2012, 12, 289–297. [Google Scholar]
- Bamishaiye, E.I.; Olayemi, F.F.; Awagu, E.F.; Bamshaiye, O.M. Proximate and phytochemical composition of Moringa oleifera leaves at three stages of maturation. Adv. J. Food Sci. Technol. 2011, 3, 233–237. [Google Scholar]
- Pari, L.; Kumar, N.A. Hepatoprotective activity of Moringa oleifera on ant tubercular drug-induced liver damage in rats. J. Med. Food 2002, 5, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In Vitro and In Vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol. 2009, 47, 2196–2201. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, N.; Pieterse, N.E.; Masika, P.J.; Mabusela, T.P.; Hoffman, L.C.; Dzama, K. Effect of Moringa oleifera leaf meal on growth performance, apparent digestibility, digestive organ size and carcass yield in broiler chickens. Livest. Sci. 2014, 161, 139–146. [Google Scholar] [CrossRef]
- Cui, Y.M.; Wang, J.; Lu, W.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Becker, K. Nutritional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Technol. 1996, 63, 211–228. [Google Scholar] [CrossRef]
- Mulaudzi, A.; Mnisi, C.M.; Mlambo, V. Dietary Moringa oleifera leaf meal improves growth performance but not haemo-biochemical and meat quality parameters in female Japanese quails. Pak. J. Nutr. 2019, 18, 953–960. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; El-Moniary, M.M.; Hamouda, Y.; El-Daly, E.F.; Youssef, A.W.; Abd ElAzeem, N.A. Effect of different levels of Moringa oleifera leaves powder on productive performance, carcass characteristics and some blood parameters of broiler chicks reared under heat stress conditions. Asian J. Anim. Vet. Adv. 2016, 11, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Afuang, W.; Siddhuraju, P.; Becker, K. Comparative nutritional evaluation of raw, methanol extracted residues and methanol extracts of moringa (Moringa oleifera Lam) leaves on growth performance and feed utilization in Nile tilapia (Oreochromis niloticus L.). Aquac. Res. 2003, 34, 1147–1159. [Google Scholar] [CrossRef]
- Richter, N.; Siddhuraju, P.; Becker, K. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture 2003, 217, 599–611. [Google Scholar] [CrossRef]
- Sul, B.; Chen, X. Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front. Vet. Sci. 2020, 7, 53. [Google Scholar] [CrossRef]
- Kim, W.K.; Lillehoj, H.S. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim. Feed Sci. Technol. 2019, 250, 41–50. [Google Scholar] [CrossRef]
- Vooren, N.V. Flexible feed formulation with multi enzyme concept. Pak. Poult 2012, 33, 7–11. [Google Scholar]
- Khanyile, M.; Ndou, S.P.; Chimonyo, M. Influence of Acacia tortilis leaf powder-based diets on growth performance of pigs. Livest. Sci. 2007, 167, 211–218. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Slominski, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [Google Scholar] [CrossRef]
- Kumanda, C.; Mlambo, V.; Mnisi, C.M. Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes physiological and meat quality responses in broilers. Animals 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Matshogo, T.B.; Mlambo, V.; Mnisi, C.M.; Manyeula, F. Effect of pre-treating dietary green seaweed with fibrolytic enzymes on growth performance, blood indices, and meat quality parameters of Cobb 500 broiler chickens. Livest. Sci. 2021, 251, 104652. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Khalil, J.K.; Saway, W.N.; Hyder, S.Z. Nutrient composition of Atriplex leaves grown in Saudi Arabia. J. Range Manag. 1986, 39, 104–107. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 2004. [Google Scholar]
- Washington, I.M.; van Hoosier, G. Clinical Biochemistry and Haematology; University of Washington: Seattle, WA, USA, 2012; pp. 59–91. [Google Scholar] [CrossRef]
- Buetow, B.S.; Treuting, P.M.; van Hoosier, G.L. The Hamster; Loeb, W.F., Quimby, F.W., Eds.; Taylor and Francis: Philadelphia, PA, USA, 1999; pp. 49–63. [Google Scholar]
- CIE. Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.) 1978, 1971/(TC-1-3); Commission Internationale de l’Eclairage: Paris, France, 1976. [Google Scholar]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–570. [Google Scholar] [CrossRef]
- Grau, R.; Hamm, R. About the water-binding capacity of the mammalian muscle. II. Commun. Z. Lebensm. Unters. Brisk. 1957, 105, 446. [Google Scholar] [CrossRef]
- Statistical Analysis System Institute Inc. Users Guide; SAS: Carry, NC, USA, 2010. [Google Scholar]
- Tejeda, O.J.; Kim, W.K. Role of dietary fiber in poultry nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R. The effects of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: Complimentary mode of action? World Poult. Sci. J. 2009, 65, 609–624. [Google Scholar] [CrossRef]
- Hussein, E.O.S.; Suliman, G.M.; Alowaimer, A.N.; Ahmed, S.H.; Abd El-Hack, M.E.; Taha, A.E.; Swelum, A.A. Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poult. Sci. 2020, 99, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Hana, A.H.; Jalal, M.A.; Abu Ishmais, M.A. The influence of supplemental multi-enzyme feed additive on the performance, carcass characteristics and meat quality traits of broiler chickens. Int. J. Poult. Sci. 2010, 9, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Hajati, H.; Rezaei, M.; Sayyahzadeh, H. The effects of enzyme supplementation on performance, carcass characteristics and some blood parameters of broilers fed on corn-soybean meal-wheat diets. Int. J. Poult. Sci. 2009, 8, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Hmar, L.; Devi, L.I.; Prava, M.; Lallianchhunga, M.C.; Tolenkhomba, T.C. Effect of age on the haematological and biochemical profile of Japanese quails (Coturnix coturnix japonica). Int. Multidiscip. Res. J. 2012, 2, 32–35. [Google Scholar]
- Scholtz, N.; Halle, I.; Flachowsky, G.; Sauerwein, H. Serum chemistry reference values in adult Japanese quail (Coturnix coturnix japonica) including sex-related differences. Poult. Sci. 2009, 88, 1186–1190. [Google Scholar] [CrossRef]
- Musa, H.H.; Chen, G.H.; Cheng, J.H.; Shuiep, E.S.; Bao, W.B. Breed and sex effect on meat quality of chicken. Int. J. Poult. Sci. 2006, 5, 566–568. [Google Scholar] [CrossRef] [Green Version]
- Saleh, F.; Tahir, M.; Ohtsuka, A.; Hayashi, K. A mixture of pure cellulose, hemicellulase and pectinase improves broiler performance. Br. Poult. Sci. 2005, 46, 602–606. [Google Scholar] [CrossRef]
- Brickett, K.E.; Dahiya, J.P.; Classen, H.L.; Gomis, S. Influence of dietary nutrient density, feed form, and lighting on growth and meat yield of broiler chickens. Poult. Sci. 2001, 86, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1509–1518. [Google Scholar] [CrossRef]
- Sherwin, J.E. Liver Function. In Clinical Chemistry: Theory, Analysis, Correlation, 4th ed.; Kaplan, L.A., Pesce, A.J., Kazmierczak, S.C., Eds.; Elsevier Science: St. Louis, MO, USA, 2003; Chapter 27; pp. 492–506. [Google Scholar]
- Abuye, C.; Urga, K.; Knapp, H.; Selmar, D.; Omwega, A.M.; Imungi, J.K.; Winterhalter, P. A compositional study of Moringa stenopetala leaves. East Afr. Med. J. 2003, 80, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Dyubele, N.L.; Muchenje, V.; Nkukwana, T.T.; Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Pref. 2010, 21, 815–819. [Google Scholar] [CrossRef]
- Lonergan, S.M.; Deeb, N.; Fedler, C.A.; Lamont, S.J. Breast meat quality and composition in unique chicken populations. Poult. Sci. 2003, 82, 1990–1994. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Bertram, H.C.; Andersen, H.J.; Karlsson, A.H.; Horn, P.; Hedegaard, J.; Nørgaard, L.; Engelsen, S.B. Prediction of technological quality (cooking loss and Napole yield) of pork based on fresh meat characteristics. Meat Sci. 2003, 65, 707–712. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef]
1 Substrates | |||||
---|---|---|---|---|---|
Nutrients | MENZ0 | MENZ25 | MENZ50 | MENZ75 | MENZ100 |
Dry matter (g/kg) | 918.4 | 921.4 | 925.8 | 913.9 | 910.1 |
Ash | 9.51 | 9.55 | 9.43 | 8.68 | 8.08 |
Organic matter | 827.3 | 825.8 | 823.3 | 820.5 | 892.2 |
Metabolizable energy (MJ/kg) | 11.9 | 11.9 | 11.9 | 11.8 | 11.9 |
Crude protein | 217.0 | 213.0 | 213.2 | 212.8 | 206.0 |
Neutral detergent fiber | 165.4 | 161.3 | 160.4 | 155.5 | 159.6 |
Acid detergent fiber | 147.2 | 148.2 | 146.6 | 145.7 | 141.9 |
Acid detergent lignin | 134.7 | 132.5 | 131.9 | 130.1 | 133.2 |
1 Diets | ||||||
---|---|---|---|---|---|---|
CON | ENZ0 | ENZ25 | ENZ50 | ENZ75 | ENZ100 | |
Ingredients (g/kg as fed basis) | ||||||
Viscozyme® L | 0.0 | 0.0 | 2.5 | 5 | 7.5 | 10 |
Moringa oleifera leaf powder | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Yellow maize fine | 698.6 | 626.9 | 626.9 | 626.9 | 626.9 | 626.9 |
Prime gluten 60 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 | 18.0 |
Full-fat soya powder | 50.7 | 148.6 | 148.6 | 148.6 | 148.6 | 148.6 |
Soybean powder | 196.7 | 70.5 | 70.5 | 70.5 | 70.5 | 70.5 |
Limestone powder | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
Mono calcium phosphate | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 |
Salt fine | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 |
Sodium bicarbonate | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 |
Choline powder | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Lysine | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
L-Threonine | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Methionine | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
Grower phytase | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 |
Vitamin and mineral premix 2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Olaquindox antibiotic | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Nutrient composition (g/kg DM, unless stated otherwise) | ||||||
Dry matter (g/kg) | 913.6 | 917.9 | 919.9 | 922.2 | 926.7 | 929.0 |
Ash | 4.66 | 4.34 | 4.58 | 4.53 | 4.63 | 4.16 |
Organic matter | 864.9 | 861.6 | 867.9 | 872.8 | 873.8 | 877.5 |
Metabolizable energy (MJ/kg) | 11.9 | 11.8 | 11.8 | 11.8 | 11.8 | 11.8 |
Crude protein | 187.2 | 187.7 | 188.6 | 188.4 | 187.7 | 188.8 |
Neutral detergent fiber | 156.5 | 155.3 | 148.3 | 152.2 | 154.1 | 154.3 |
Acid detergent fiber | 141.1 | 144.1 | 142.3 | 149.2 | 144.1 | 148.7 |
Acid detergent lignin | 131.3 | 138.6 | 134.2 | 134.4 | 134.4 | 136.2 |
1 Diets | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 Parameters | CON | ENZ0 | ENZ25 | ENZ50 | ENZ75 | ENZ100 | 3 SEM | Linear | Quadratic |
Overall BWG | 148.8 | 137.6 | 146.3 | 145.9 | 138.9 | 144.5 | 4.625 | 0.651 | 0.452 |
Overall FCE | 0.203 | 0.187 | 0.203 | 0.197 | 0.189 | 0.200 | 0.005 | 0.525 | 0.587 |
Average weekly feed intake | |||||||||
Week 3 | 139.5 | 139.2 | 143.1 | 140.5 | 143.8 | 140.0 | 3.564 | 0.082 | 0.443 |
Week 4 | 150.7 | 157.6 | 151.3 | 151.5 | 154.2 | 160.2 | 3.750 | 0.492 | 0.054 |
Week 5 | 232.2 | 229.1 | 223.5 | 231.8 | 230.0 | 223.4 | 3.781 | 0.712 | 0.447 |
Week 6 | 209.2 | 205.8 | 202.6 | 214.0 | 206.7 | 195.5 | 5.043 | 0.337 | 0.093 |
1 Diets | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | CON | ENZ0 | ENZ25 | ENZ50 | ENZ75 | ENZ100 | 2 SEM | Linear | Quadratic |
Hemoglobin (g/dL) | 6.25 | 9.20 | 8.66 | 12.0 | 7.60 | 9.05 | 1.17 | 0.211 | 0.779 |
Neutrophils (×109/L) | 3.36 ab | 0.980 b | 2.69 ab | 3.26 ab | 1.39 b | 4.47 a | 1.153 | 0.017 | 0.827 |
Monocytes (×109/L) | 0.558 | 0.243 | 1.23 | 1.15 | 0.301 | 0.825 | 0.505 | 0.675 | 0.340 |
Eosinophils (×109/L) | 0.826 | 1.002 | 0.773 | 0.282 | 0.407 | 0.669 | 0.340 | 0.237 | 0.862 |
Basophils (×109/L) | 0.040 | 0.147 | 0.110 | 0.063 | 0.043 | 0.101 | 0.068 | 0.554 | 0.259 |
Glucose (mmol/L) | 6.74 | 7.87 | 11.6 | 12.1 | 6.70 | 6.56 | 2.775 | 0.285 | 0.105 |
Phosphorus (mmol/L) | 4.74 | 5.00 | 4.93 | 4.20 | 4.71 | 4.55 | 0.306 | 0.158 | 0.246 |
Total protein (g/L) | 54.5 | 57.5 | 74.1 | 65.0 | 66.6 | 54.5 | 10.56 | 0.530 | 0.074 |
Albumin (g/L) | 29.0 | 18.4 | 22.7 | 19.4 | 19.0 | 17.3 | 3.272 | 0.289 | 0.172 |
Globulin (g/L) | 35.0 | 38.9 | 51.4 | 47.9 | 47.5 | 40.6 | 8.747 | 0.984 | 0.076 |
Alkaline phosphatase (U/L) | 123.5 | 232.9 | 197.7 | 141.6 | 149.5 | 201.3 | 44.46 | 0.329 | 0.084 |
Amylase (U/L) | 224.7 | 282.0 | 336.7 | 263.8 | 292.6 | 460.3 | 86.20 | 0.167 | 0.220 |
Lipase (U/L) | 332.3 | 238.7 | 244.1 | 220.8 | 201.0 | 198.7 | 31.13 | 0.068 | 0.878 |
1 Diets | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | CON | ENZ0 | ENZ25 | ENZ50 | ENZ75 | ENZ100 | 2 SEM | Linear | Quadratic |
Final body weight (g) | 239.5 | 229.8 | 232.5 | 230.5 | 226.6 | 230.2 | 5.163 | 0.725 | 0.995 |
Hot carcass weight (g) | 150.1 | 143.8 | 146.5 | 138.6 | 146.9 | 139.2 | 2.968 | 0.359 | 0.682 |
Cold carcass weight (g) | 146.3 | 139.5 | 141.3 | 137.1 | 142.1 | 134.4 | 2.970 | 0.305 | 0.365 |
Carcass yield (%) | 62.8 | 62.6 | 63.0 | 60.1 | 64.9 | 60.5 | 1.493 | 0.648 | 0.751 |
Breast | 17.0 | 16.4 | 17.0 | 17.6 | 15.0 | 16.4 | 0.701 | 0.400 | 0.577 |
Wing | 4.37 | 4.70 | 4.91 | 4.79 | 4.73 | 4.80 | 0.137 | 0.988 | 0.676 |
Thigh | 6.19 | 6.22 | 7.60 | 6.57 | 6.30 | 6.23 | 0.484 | 0.455 | 0.298 |
Drumstick | 4.28 | 4.76 | 4.63 | 4.48 | 4.20 | 4.50 | 0.157 | 0.086 | 0.259 |
Gizzard | 2.20 | 1.99 | 2.22 | 2.24 | 2.18 | 2.13 | 0.104 | 0.598 | 0.023 |
Liver | 2.89 | 2.69 | 2.84 | 2.90 | 2.85 | 2.64 | 0.385 | 0.501 | 0.532 |
Proventriculus | 0.614 | 0.610 | 0.598 | 0.609 | 0.696 | 0.534 | 0.064 | 0.501 | 0.533 |
Small intestine | 4.28 | 3.45 | 4.16 | 3.52 | 3.47 | 4.60 | 0.564 | 0.684 | 0.379 |
1 Diets | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 Parameters | CON | ENZ0 | ENZ25 | ENZ50 | ENZ75 | ENZ100 | 3 SEM | Linear | Quadratic |
pH1 | 5.83 | 5.83 | 5.87 | 5.81 | 5.97 | 5.94 | 0.056 | 0.055 | 0.648 |
L*1 | 46.4 | 51.3 | 48.4 | 48.1 | 47.3 | 48.9 | 1.270 | 0.164 | 0.084 |
a*1 | 5.41 | 5.37 | 5.64 | 5.98 | 5.83 | 5.27 | 0.346 | 0.989 | 0.092 |
b*1 | 8.89 | 12.5 | 12.0 | 11.8 | 11.0 | 12.4 | 0.507 | 0.484 | 0.127 |
Chroma1 | 10.4 | 13.6 | 13.3 | 13.3 | 12.4 | 13.5 | 0.500 | 0.466 | 0.313 |
Hue angle1 | 1.02 b | 1.16 a | 1.12 a | 1.10 a | 1.08 a | 1.16 a | 0.027 | 0.702 | 0.027 |
pH24 | 5.69 | 5.84 | 5.86 | 5.85 | 5.83 | 5.84 | 0.026 | 0.534 | 0.738 |
L*24 | 54.0 | 50.7 | 47.7 | 46.5 | 45.7 | 45.9 | 5.125 | 0.000 | 0.057 |
a*24 | 8.10 | 8.21 | 7.48 | 9.07 | 9.19 | 10.19 | 0.868 | 0.057 | 0.561 |
b*24 | 10.1 | 14.8 | 13.0 | 13.7 | 14.2 | 13.5 | 0.495 | 0.437 | 0.264 |
Chroma24 | 13.0 | 16.9 | 15.0 | 16.4 | 17.0 | 17.2 | 0.783 | 0.338 | 0.255 |
Hue angle24 | 0.895 b | 1.06 a | 1.04 ab | 0.988 a | 0.998 a | 0.950 a | 0.034 | 0.019 | 0.947 |
Cooking loss (%) | 19.7 | 17.8 | 12.9 | 16.3 | 20.2 | 18.3 | 2.410 | 0.211 | 0.403 |
Shear force (N) | 3.26 | 2.85 | 2.51 | 2.69 | 3.10 | 3.53 | 0.468 | 0.197 | 0.319 |
WHC (%) | 87.3 | 88.2 | 87.9 | 87.1 | 83.5 | 85.8 | 1.631 | 0.102 | 0.734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulaudzi, A.; Mnisi, C.M.; Mlambo, V. Effect of Pre-Treating Dietary Moringa oleifera Leaf Powder with Fibrolytic Enzymes on Physiological and Meat Quality Parameters in Jumbo Quail. Poultry 2022, 1, 54-65. https://doi.org/10.3390/poultry1020006
Mulaudzi A, Mnisi CM, Mlambo V. Effect of Pre-Treating Dietary Moringa oleifera Leaf Powder with Fibrolytic Enzymes on Physiological and Meat Quality Parameters in Jumbo Quail. Poultry. 2022; 1(2):54-65. https://doi.org/10.3390/poultry1020006
Chicago/Turabian StyleMulaudzi, Anzai, Caven Mguvane Mnisi, and Victor Mlambo. 2022. "Effect of Pre-Treating Dietary Moringa oleifera Leaf Powder with Fibrolytic Enzymes on Physiological and Meat Quality Parameters in Jumbo Quail" Poultry 1, no. 2: 54-65. https://doi.org/10.3390/poultry1020006
APA StyleMulaudzi, A., Mnisi, C. M., & Mlambo, V. (2022). Effect of Pre-Treating Dietary Moringa oleifera Leaf Powder with Fibrolytic Enzymes on Physiological and Meat Quality Parameters in Jumbo Quail. Poultry, 1(2), 54-65. https://doi.org/10.3390/poultry1020006