Effects of Varying Levels of Dietary DL-Methionine Supplementation on Breast Meat Quality of Male and Female Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Birds, Diets, and Housing
2.2. Feed and Feed Analyses
2.3. Sample Collection and Processing
2.4. Meat Quality Analysis
2.4.1. Color
2.4.2. pH
2.4.3. Drip Loss (DL)
2.4.4. Water-Holding Capacity (WHC)
2.4.5. Moisture Uptake
2.4.6. Cooking Yield
2.4.7. Shear Force and Texture Profile Analysis (TPA)
2.4.8. Total Antioxidant Capacity (TAC)
2.4.9. Lipid Oxidation (LO)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Color and pH
3.2. Cooking Yield, Water-Holding Capacity, Moisture Uptake, and Drip Loss
3.3. Textural Properties
3.4. Total Antioxidant Capacity (TAC)
3.5. Lipid Oxidation (LO)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, C.G.; Harvey, D.; Zahniser, S.; Gale, F.; Liefert, W. Assessing the Growth of Broiler and Poultry Meat Exports; USDA Economic Research Service: Washington, DC, USA, 2013.
- Katiyo, W.; Coorey, R.; Buys, E.M.; de Kock, H.L. Consumers’ perceptions of intrinsic and extrinsic attributes as indicators of safety and quality of chicken meat: Actionable information for public health authorities and the chicken industry. J. Food Sci. 2020, 85, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Escobedo del Bosque, C.I.; Altmann, B.A.; Ciulu, M.; Halle, I.; Jansen, S.; Nolte, T.; Weigend, S.; Mörlein, D. Meat Quality Parameters and Sensory Properties of One High-Performing and Two Local Chicken Breeds Fed with Vicia faba. Foods 2020, 9, 1052. [Google Scholar] [CrossRef]
- Cui, Y.-m.; Wang, J.; Lu, W.; Zhang, H.-j.; Wu, S.-g.; Qi, G.-h. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Hayat, Z.; Rehman, A.U.; Akram, K.; Farooq, U.; Saleem, G. Evaluation of a natural methionine source on broiler growth performance. J. Sci. Food. Agric. 2015, 95, 2462–2466. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Jiang, X.; Ding, L.; Wang, T.; Zhou, Y. Effects of dietary methionine on breast muscle growth, myogenic gene expression and IGF-I signaling in fast- and slow-growing broilers. Sci. Rep. 2017, 7, 1924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Saremi, B.; Gilbert, E.R.; Wong, E.A. Physiological and biochemical aspects of methionine isomers and a methionine analogue in broilers. Poult. Sci. 2017, 96, 425–439. [Google Scholar] [CrossRef]
- Albrecht, A.; Hebel, M.; Heinemann, C.; Herbert, U.; Miskel, D.; Saremi, B.; Kreyenschmidt, J. Assessment of Meat Quality and Shelf Life from Broilers Fed with Different Sources and Concentrations of Methionine. J. Food Qual. 2019, 2019, 6182580. [Google Scholar] [CrossRef]
- Conde-Aguilera, J.A.; Cholet, J.C.; Lessire, M.; Mercier, Y.; Tesseraud, S.; van Milgen, J. The level and source of free-methionine affect body composition and breast muscle traits in growing broilers. Poult. Sci. 2016, 95, 2322–2331. [Google Scholar] [CrossRef] [PubMed]
- Aksu, M.I.; Imik, H.; Karaoğlu, M. Influence of dietary sorghum (sorghum vulgare) and corn supplemented with methionine on cut-up pieces weights of broiler carcass and quality properties of breast and drumsticks meat. Food Sci. Tech. Int. 2016, 13, 361–367. [Google Scholar] [CrossRef]
- Albrecht, A.; Herbert, U.; Miskel, D.; Heinemann, C.; Braun, C.; Dohlen, S.; Zeitz, J.O.; Eder, K.; Saremi, B.; Kreyenschmidt, J. Effect of methionine supplementation in chicken feed on the quality and shelf life of fresh poultry meat. Poult. Sci 2017, 96, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, M.S.; Chen, Y.; Liu, R.; Tan, X.; Li, W.; El-Wardany, I.; Zhao, D.; Zheng, M.; Wen, J.; Zhao, G. Paternal Dietary Methionine Supplementation Improves Carcass Traits and Meat Quality of Chicken Progeny. Animals 2021, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheang, B.; Lim, A. Grocery perishables management. Prod. Oper. Manag. 2012, 21, 504–517. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; Peng, Z.; Zhao, R.; Zhou, G. Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci. 2009, 88, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Fikre, A.; Yami, A.; Kuo, Y.H.; Ahmed, S.; Gheysen, G.; Lambein, F. Effect of methionine supplement on physical responses and neurological symptoms in broiler chicks fed grass pea (Lathyrus sativus)-based starter ration. Food Chem. Toxicol. 2010, 48, 11–17. [Google Scholar] [CrossRef]
- Pokoo-Aikins, A.; Timmons, J.R.; Min, B.R.; Lee, W.R.; Mwangi, S.N.; Chen, C. Effects of Feeding Varying Levels of DL-Methionine on Live Performance and Yield of Broiler Chickens. Animals 2021, 11, 2839. [Google Scholar] [CrossRef]
- de Sousa, F.C.B.; Del Vesco, A.P.; Zancanela, V.; Santana, T.P.; de Souza Khatlab, A.; Feitosa, V.E.M.; Brito, C.O.; Barbosa, L.T.; Gasparino, E. Effects of methionine as free amino acid and dipeptide on productive efficiency and meat quality of broilers under acute and chronic heat stress. Anim. Prod. Sci. 2022, 62, 342–357. [Google Scholar] [CrossRef]
- Miao, Z.Q.; Dong, Y.Y.; Qin, X.; Yuan, J.M.; Han, M.M.; Zhang, K.K.; Shi, S.R.; Song, X.Y.; Zhang, J.Z.; Li, J.H. Dietary supplementation of methionine mitigates oxidative stress in broilers under high stocking density. Poult. Sci. 2021, 100, 101231. [Google Scholar] [CrossRef]
- National Research Council. Nutritional Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994.
- USDA. National organic program; amendment to the national list of allowed and prohibited substances (livestock). Fed. Regist. 2011, 76, 13501–13504. [Google Scholar]
- Zhang, W.; Xiao, S.; Lee, E.J.; Ahn, D.U. Consumption of oxidized oil increases oxidative stress in broilers and affects the quality of breast meat. J. Agric. Food Chem. 2011, 59, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Van Laack, R.; Liu, C.H.; Smith, M.; Loveday, H. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 2000, 79, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Green, B.W. Use of microbial transglutaminase and nonmeat proteins to improve functional properties of low NaCl, phosphate-free patties made from channel catfish (Ictalurus punctatus) belly flap meat. J. Food Sci. 2008, 73, E218–E226. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.C. Chapter 1—Texture, Viscosity, and Food. In Food Texture and Viscosity, 2nd ed.; Bourne, M.C., Ed.; Academic Press: London, UK, 2002; pp. 1–32. [Google Scholar]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; McClung, A.M.; Chen, M.H. Phytochemicals and antioxidant capacities in rice brans of different color. J. Food Sci. 2011, 76, C117–C126. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Parker, N.B.; Löhr, C.V.; Cherian, G. Docosahexaenoic acid (22: 6 n-3)-rich microalgae along with methionine supplementation in broiler chickens: Effects on production performance, breast muscle quality attributes, lipid profile, and incidence of white striping and myopathy. Poult. Sci. 2021, 100, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Bezerra de Carvalho, G. Níveis e Fontes de Metionina na Nutrição de Frangos de Corte; Universidade Federal de Goiás: Goiânia, Brazil, 2017. [Google Scholar]
- de Freitas Dionizio, A.; de Souza Khatlab, A.; Alcalde, C.R.; Gasparino, E.; Feihrmann, A.C. Supplementation with free methionine or methionine dipeptide improves meat quality in broilers exposed to heat stress. J. Food Sci. Tech. 2021, 58, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.C.; King, A.; Barbut, S.; Clause, J.; Cornforth, D.; Hanson, D.; Lindahl, G. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012; pp. 1–135. [Google Scholar]
- Qamar, A.; Mohyuddin, S.G.; Hamza, A.; Lartey, K.A.; Shi, C.Q.; Yang, F.; Lu, Z.; Yang, J.; Chen, J.J. Physical and Chemical Factors Affecting Chicken Meat Color. Pak. J. Sci. 2019, 71, 82. [Google Scholar]
- Faustman, C.; Suman, S.P. Chapter 11—The Eating Quality of Meat: I—Color; In Lawrie’s Meat Science, 8th ed.; Toldra, F., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 329–356. [Google Scholar]
- Fouad, A.; El-Senousey, H. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australas J. Anim. Sci. 2014, 27, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowker, B.; Zhuang, H. Relationship between muscle exudate protein composition and broiler breast meat quality. Poul. Sci. 2013, 92, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, C.; Peng, H.; Yin, H.; Wang, Y.; Hu, Y.; Yu, C.; Jiang, X.; Du, H.; Li, Q. Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat type birds. Animals 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. Worlds Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animals 2022, 16, 100331. [Google Scholar] [CrossRef]
- Guan, R.-F.; Lyu, F.; Chen, X.-Q.; Ma, J.-Q.; Jiang, H.; Xiao, C.-G. Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J. Zhejiang Univ. Sci. B 2013, 14, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Hughes, J.; Oiseth, S.; Purslow, P.; Warner, R. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Betti, M.; Schneider, B.; Wismer, W.; Carney, V.; Zuidhof, M.; Renema, R. Omega-3-enriched broiler meat: 2. Functional properties, oxidative stability, and consumer acceptance. Poult. Sci. 2009, 88, 1085–1095. [Google Scholar] [CrossRef]
- Zhai, W.; Peebles, E.; Schilling, M.; Mercier, Y. Effects of dietary lysine and methionine supplementation on Ross 708 male broilers from 21 to 42 d of age (I): Growth performance, meat yield, and cost effectiveness. J. Appl. Poult. Res. 2016, 25, 197–211. [Google Scholar] [CrossRef]
- Lepetit, J. Collagen contribution to meat toughness: Theoretical aspects. Meat Sci. 2008, 80, 960–967. [Google Scholar] [CrossRef]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP content in broiler feeds: Impact on animal performance, meat quality and nitrogen utilization. Animals 2017, 11, 1881–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.G.; Pan, N.X.; Chen, M.J.; Wang, X.Q.; Yan, H.C.; Gao, C.Q. Effects of Dietary Supplementation with dl-Methionine and dl-Methionyl-dl-Methionine in Breeding Pigeons on the Carcass Characteristics, Meat Quality and Antioxidant Activity of Squabs. Antioxidants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berri, C.; Métayer-Coustard, S.; Geraert, A.; Mercier, Y.; Tesseraud, S. Effect of 3 methionine sources and levels on broiler meat quality. In Proceedings of the World’s Poultry Congress, Salvador, Brazil, 5–9 August 2012. [Google Scholar]
- Fagundes, N.S.; Milfort, M.C.; Williams, S.M.; Da Costa, M.J.; Fuller, A.L.; Menten, J.F.; Rekaya, R.; Aggrey, S.E. Dietary methionine level alters growth, digestibility, and gene expression of amino acid transporters in meat-type chickens. Poult. Sci. 2020, 99, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.H.B.; Shehab, A.; Cherian, G. Methionine supplementation augments tissue n-3 fatty acid and tocopherol content in broiler birds fed flaxseed. Anim. Feed Sci. Tech. 2017, 228, 149–158. [Google Scholar] [CrossRef]
- Sahebi-Ala, F.; Hassanabadi, A.; Golian, A.; Rajaei-Sharifabadi, H. Effects of replacement different levels and sources of methionine with betaine on jejunal morphology, duodenal mitochondrial respiration, and lipid peroxidation in heat-stressed broiler chickens. Ital. J. Anim. Sci. 2021, 20, 1601–1611. [Google Scholar] [CrossRef]
- Andreo, A.I.; Doval, M.M.; Romero, A.M.; Judis, M.A. Influence of heating time and oxygen availability on lipid oxidation in meat emulsions. Euro. J. Lipid. Sci. Tech. 2003, 105, 207–213. [Google Scholar] [CrossRef]
- NOSB Chair: Jean Richardson National Organic Standards Board Livestock Subcommittee Synthetic Methionine (MET) in Organic Poultry Feed Proposal Revised 31 January 2015. Available online: https://www.ams.usda.gov/sites/default/files/media/LS%20MET%20Final%20Rec.pdf (accessed on 1 November 2021).
- Burley, H.K.; Patterson, P.H.; Anderson, K.E. Alternative feeding strategies and genetics for providing adequate methionine in organic poultry diets with limited use of synthetic amino acids. Worlds Poult. Sci. J. 2016, 72, 168–177. [Google Scholar] [CrossRef]
Ingredient | Day 0–21 (Starter) (%) | Day 21–35 (Grower) (%) | Day 35–46/48 (Finisher) (%) |
---|---|---|---|
Corn | 47.78 | 53.96 | 60.66 |
Soybean Meal | 46.75 | 39.80 | 33.35 |
Filler 1 | 0.20 | 0.20 | 0.20 |
Vegetable Oil | 2.55 | 3.40 | 3.75 |
Defluorinated Phosphate | 1.96 | 1.64 | 1.07 |
Limestone | 0.44 | 0.51 | 0.51 |
Slat | 0.15 | 0.21 | 0.29 |
Betaine 32% | 0.00 | 0.09 | 0.05 |
Trace Minerals 2 | 0.05 | 0.06 | 0.06 |
DL-Methionine | 0.00 | 0.00 | 0.00 |
Vitamin Premix 3 | 0.05 | 0.05 | 0.03 |
Enzyme 4 | 0.05 | 0.05 | 0.00 |
Calsporin 5 | 0.02 | 0.03 | 0.03 |
Chemical Composition | 0 g MET/kg | 0.5 g MET/kg | 1.0 g MET/kg | 2.0 g MET/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Str | Gr | Fin | Str | Gr | Fin | Str | Gr | Fin | Str | Gr | Fin | |
Crude Protein (%) | 26.49 | 22.2 | 20.57 | 26.09 | 22.89 | 21.13 | 25.61 | 22.24 | 21.11 | 25.54 | 23.73 | 20.36 |
Moisture (%) | 12.38 | 12.62 | 12.44 | 12.16 | 12.83 | 12.42 | 12.31 | 12.75 | 12.52 | 12.45 | 12.68 | 12.58 |
Fat (Crude) (%) | 4.9 | 5.88 | 6.26 | 4.77 | 5.75 | 6.41 | 5.07 | 5.78 | 6.32 | 4.74 | 5.90 | 6.45 |
Fiber (Crude) (%) | 2.58 | 2.56 | 2.24 | 2.90 | 3.05 | 1.88 | 2.85 | 2.22 | 2.31 | 2.995 | 2.33 | 2.22 |
Ash (%) | 6.015 | 5.35 | 4.80 | 6.03 | 5.35 | 4.86 | 6.02 | 5.46 | 4.03 | 5.97 | 5.18 | 4.54 |
ME Kcal/kg | 3011 | 3075 | 3131 | 3000.5 | 3044 | 3150 | 3012.5 | 3074 | 3156 | 2987.5 | 3088 | 3146 |
Sulfur (%) | 0.23 | 0.20 | 0.19 | 0.24 | 0.22 | 0.196 | 0.25 | 0.23 | 0.214 | 0.27 | 0.25 | 0.238 |
Met (%) | 0.37 | 0.31 | 0.33 | 0.40 | 0.38 | 0.33 | 0.44 | 0.39 | 0.39 | 0.53 | 0.47 | 0.43 |
Cys (%) | 0.32 | 0.36 | 0.26 | 0.42 | 0.32 | 0.30 | 0.40 | 0.32 | 0.28 | 0.39 | 0.28 | 0.31 |
Lys (%) | 1.46 | 1.42 | 1.21 | 1.45 | 1.41 | 1.26 | 1.48 | 1.41 | 1.28 | 1.47 | 1.30 | 1.27 |
Meat Color and pH | Meat Quality (Shelf Life) | |||||||
---|---|---|---|---|---|---|---|---|
Variable | L* | a* | b* | Ultimate pH | Cooking Yield (% Meat) | Drip Loss (%) | Water-Holding Capacity (%) | Moisture Uptake (%) |
MET Level | ||||||||
0.0 g MET/kg | 55.07 | 2.71 a | 7.82 | 5.86 ab | 66.18 b | 4.56 ab | 10.82 | 38.14 |
0.5 g MET/kg | 54.99 | 2.35 ab | 8.16 | 5.88 a | 68.03 b | 3.53 b | 9.87 | 43.47 |
1.0 g MET/kg | 54.71 | 2.22 b | 7.76 | 5.83 ab | 79.04 a | 5.78 a | 11.14 | 44.09 |
2.0 g MET/kg | 54.54 | 2.04 b | 7.67 | 5.82 b | 78.60 a | 5.82 a | 11.76 | 38.23 |
SEM | 0.56 | 0.09 | 0.20 | 0.015 | 0.57 | 0.32 | 0.57 | 3.47 |
Sex | ||||||||
Male | 54.42 | 2.55 a | 7.42 b | 5.85 | 73.06 | 4.77 | 11.10 | 39.42 |
Female | 55.13 | 2.11 b | 8.29 a | 5.84 | 72.86 | 5.08 | 10.70 | 42.54 |
SEM | 0.40 | 0.06 | 0.14 | 0.010 | 0.40 | 0.23 | 0.41 | 2.45 |
MET Level × Sex | ||||||||
0.0 g/Male | 54.57 | 2.91 | 7.28 | 5.84 | 65.81 | 3.78 | 10.68 | 36.85 |
0.5 g/Male | 54.57 | 2.57 | 7.85 | 5.88 | 68.15 | 3.59 | 10.05 | 40.21 |
1.0 g/Male | 54.88 | 2.54 | 7.24 | 5.82 | 78.90 | 6.19 | 11.86 | 42.27 |
2.0 g/Male | 54.06 | 2.20 | 7.30 | 5.86 | 79.38 | 5.51 | 11.81 | 38.37 |
0.0 g/Female | 55.57 | 2.50 | 8.35 | 5.87 | 66.55 | 5.34 | 10.97 | 39.43 |
0.5 g/Female | 55.40 | 2.14 | 8.47 | 5.88 | 67.91 | 3.47 | 9.700 | 46.72 |
1.0 g/Female | 54.55 | 1.91 | 8.28 | 5.85 | 79.17 | 5.38 | 10.42 | 45.91 |
2.0 g/Female | 55.01 | 1.88 | 8.05 | 5.78 | 77.83 | 6.13 | 11.72 | 30.09 |
SEM | 0.79 | 0.13 | 0.28 | 0.021 | 0.80 | 0.45 | 0.81 | 4.91 |
p-Value | ||||||||
MET Level | 0.9008 | 0.0003 | 0.3474 | 0.0354 | 0.0001 | 0.0001 | 0.1637 | 0.4720 |
Sex | 0.2869 | 0.0001 | 0.0002 | 0.6460 | 0.7348 | 0.3365 | 0.4968 | 0.3807 |
MET Level × Sex | 0.8122 | 0.6737 | 0.8168 | 0.0584 | 0.5236 | 0.0868 | 0.7409 | 0.9202 |
TPA | Shear Force | TAC | |||||
---|---|---|---|---|---|---|---|
Variable | Hardness (kgf) | Cohesiveness (%) | Chewiness (kgf∙sec) | Resilience (%) | Firmness (kgf) | Toughness (kgf∙sec) | Muscle TAC (µmol TE/g Meat) |
MET Level | |||||||
0.0 g MET/kg | 47.43 | 0.46 | 8.69 | 0.24 | 2.88 b | 32.23 | 12.17 |
0.5 g MET/kg | 42.37 | 0.43 | 7.13 | 0.23 | 2.87 b | 32.07 | 12.49 |
1.0 g MET/kg | 46.77 | 0.41 | 6.94 | 0.23 | 3.20 a | 33.98 | 11.28 |
2.0 g MET/kg | 44.58 | 0.64 | 10.04 | 0.24 | 3.09 ab | 33.58 | 11.41 |
SEM | 1.79 | 1.12 | 2.23 | 0.02 | 0.06 | 0.73 | 0.38 |
Sex | |||||||
Male | 44.95 | 0.55 | 9.60 | 0.25 | 3.31 a | 36.05 a | 12.31 a |
Female | 45.62 | 0.41 | 6.80 | 0.22 | 2.72 b | 29.88 b | 11.37 b |
SEM | 1.26 | 0.09 | 1.57 | 0.01 | 0.04 | 0.51 | 0.27 |
MET Level × Sex | |||||||
0.0 g/Male | 50.13 | 0.44 | 10.18 | 0.26 | 3.23 | 35.71 | 11.80 ab |
0.5 g/Male | 41.43 | 0.46 | 8.20 | 0.24 | 3.06 | 34.17 | 12.70 a |
1.0 g/Male | 45.43 | 0.41 | 6.27 | 0.21 | 3.56 | 37.63 | 12.31 a |
2.0 g/Male | 42.80 | 0.88 | 13.77 | 0.28 | 3.39 | 36.69 | 12.43 a |
0.0 g/Female | 44.73 | 0.44 | 7.20 | 0.23 | 2.54 | 28.76 | 12.54 a |
0.5 g/Female | 43.30 | 0.41 | 6.06 | 0.22 | 2.69 | 29.97 | 12.29 a |
1.0 g/Female | 48.10 | 0.41 | 7.62 | 0.22 | 2.85 | 30.33 | 10.26 b |
2.0 g/Female | 46.36 | 0.39 | 6.32 | 0.21 | 2.79 | 30.46 | 10.39 b |
SEM | 2.53 | 0.17 | 3.15 | 0.02 | 0.08 | 1.03 | 0.54 |
p-Value | |||||||
MET Level | 0.2082 | 0.5532 | 0.7356 | 0.6361 | 0.0009 | 0.1919 | 0.10 |
Sex | 0.7102 | 0.2653 | 0.2218 | 0.1430 | 0.0001 | 0.0001 | 0.02 |
MET Level × Sex | 0.2936 | 0.4644 | 0.5848 | 0.4858 | 0.1573 | 0.4532 | 0.04 |
Lipid Oxidation (mg MDA/kg Meat) | ||||||
---|---|---|---|---|---|---|
Raw Meat | Cooked Meat | |||||
Variable | Day 0 | Day 5 | Day 10 | Day 0 | Day 3 | Day 7 |
MET Level | ||||||
0.0 g | 0.23 | 0.32 | 0.31 a | 3.90 a | 5.32 a | 7.74 |
0.5 g | 0.19 | 0.32 | 0.25 b | 3.13 ab | 4.33 bc | 6.90 |
1.0 g | 0.19 | 0.35 | 0.26 ab | 2.54 b | 4.66 ab | 8.00 |
2.0 g | 0.21 | 0.35 | 0.31 a | 1.53 c | 3.62 c | 8.23 |
SEM | 0.01 | 0.02 | 0.02 | 0.20 | 0.24 | 0.35 |
Sex | ||||||
Male | 0.21 | 0.33 | 0.28 | 2.91 | 4.69 | 7.85 |
Female | 0.20 | 0.33 | 0.29 | 2.64 | 4.27 | 7.59 |
SEM | 0.01 | 0.02 | 0.01 | 0.14 | 0.17 | 0.25 |
MET Level × Sex | ||||||
0.0 g/Male | 0.23 | 0.31 | 0.36 a | 4.32 | 5.59 | 7.54 |
0.5 g/Male | 0.20 | 0.27 | 0.23 b | 2.90 | 4.20 | 6.86 |
1.0 g/Male | 0.20 | 0.36 | 0.23 b | 2.75 | 5.23 | 8.03 |
2.0 g/Male | 0.22 | 0.40 | 0.30 ab | 1.67 | 3.75 | 7.93 |
0.0 g/Female | 0.23 | 0.32 | 0.26 ab | 3.47 | 5.04 | 7.95 |
0.5 g/Female | 0.19 | 0.37 | 0.27 ab | 3.36 | 4.47 | 6.94 |
1.0 g/Female | 0.19 | 0.35 | 0.29 ab | 2.33 | 4.08 | 7.97 |
2.0 g/Female | 0.20 | 0.31 | 0.33 ab | 1.40 | 3.49 | 8.54 |
SEM | 0.02 | 0.03 | 0.03 | 0.28 | 0.34 | 0.50 |
p-Value | ||||||
MET Level | 0.1215 | 0.5350 | 0.0459 | 0.0001 | 0.0007 | 0.0705 |
Sex | 0.3903 | 0.8718 | 0.6802 | 0.1923 | 0.0987 | 0.4715 |
MET Level × Sex | 0.9597 | 0.0618 | 0.0215 | 0.1639 | 0.2477 | 0.9007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokoo-Aikins, A.; Timmons, J.R.; Min, B.R.; Lee, W.R.; Mwangi, S.N.; McDonough, C.M.; Chen, C. Effects of Varying Levels of Dietary DL-Methionine Supplementation on Breast Meat Quality of Male and Female Broilers. Poultry 2022, 1, 40-53. https://doi.org/10.3390/poultry1010005
Pokoo-Aikins A, Timmons JR, Min BR, Lee WR, Mwangi SN, McDonough CM, Chen C. Effects of Varying Levels of Dietary DL-Methionine Supplementation on Breast Meat Quality of Male and Female Broilers. Poultry. 2022; 1(1):40-53. https://doi.org/10.3390/poultry1010005
Chicago/Turabian StylePokoo-Aikins, Anthony, Jennifer Rumsey Timmons, Byungrok Rok Min, William Robert Lee, Samuel Njoroge Mwangi, Callie Megan McDonough, and Chongxiao Chen. 2022. "Effects of Varying Levels of Dietary DL-Methionine Supplementation on Breast Meat Quality of Male and Female Broilers" Poultry 1, no. 1: 40-53. https://doi.org/10.3390/poultry1010005
APA StylePokoo-Aikins, A., Timmons, J. R., Min, B. R., Lee, W. R., Mwangi, S. N., McDonough, C. M., & Chen, C. (2022). Effects of Varying Levels of Dietary DL-Methionine Supplementation on Breast Meat Quality of Male and Female Broilers. Poultry, 1(1), 40-53. https://doi.org/10.3390/poultry1010005