Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Information
2.2. Identification of Orthologues
2.3. Identification of Positively Selected Genes
2.4. Subtractive Genomics and Protein Subcellular Localization Prediction
2.5. Genomic Resistance and Virulence Analysis
2.6. Selection of Possible Drug Target Candidates
2.7. Protein Tertiary Structure Prediction
2.8. Molecular Modeling Analysis
3. Results
3.1. Analysis of Positively Selected Orthogroups
3.2. Resistance and Virulence Analysis
3.3. Selection of Drug Targets
3.4. Prediction of the Tertiary Structure of the Selected Proteins
3.5. Molecular Docking of Selected Proteins with Natural Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, Y.P.; Tan, G.C.; Wong, K.K.; Anushia, S.; Cheah, F.C. Gardnerella Vaginalis in Perinatology: An Overview of the Clinicopathological Correlation. Malays. J. Pathol. 2018, 40, 267–286. [Google Scholar]
- Mohammadzadeh, R.; Kalani, B.S.; Kashanian, M.; Oshaghi, M.; Amirmozafari, N. Prevalence of Vaginolysin, Sialidase and Phospholipase Genes in Gardnerella Vaginalis Isolates between Bacterial Vaginosis and Healthy Individuals. Med. J. Islam. Repub. Iran 2019, 33, 85. [Google Scholar] [CrossRef]
- Shaskolskiy, B.; Dementieva, E.; Leinsoo, A.; Runina, A.; Vorobyev, D.; Plakhova, X.; Kubanov, A.; Deryabin, D.; Gryadunov, D. Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis. Front. Microbiol. 2016, 7, 747. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Martins, A.P.; Rodrigues, M.E.; Cerca, N. Lactobacillus Crispatus Represses Vaginolysin Expression by BV Associated Gardnerella Vaginalis and Reduces Cell Cytotoxicity. Anaerobe 2018, 50, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.L.; Stull-Lane, A.; Girerd, P.H.; Jefferson, K.K. Analysis of Adherence, Biofilm Formation and Cytotoxicity Suggests a Greater Virulence Potential of Gardnerella Vaginalis Relative to Other Bacterial-Vaginosis-Associated Anaerobes. Microbiology 2010, 156, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Rigo, G.V.; Tasca, T. Vaginitis: Review on Drug Resistance. Curr. Drug Targets 2020, 21, 1672–1686. [Google Scholar] [CrossRef]
- Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.J.; Moser, C.; Jensen, P.Ø.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The Clinical Impact of Bacterial Biofilms. Int. J. Oral Sci. 2011, 3, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial Biofilms: From the Natural Environment to Infectious Diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Lopes Dos Santos Santiago, G.; Deschaght, P.; El Aila, N.; Kiama, T.N.; Verstraelen, H.; Jefferson, K.K.; Temmerman, M.; Vaneechoutte, M. Gardnerella Vaginalis Comprises Three Distinct Genotypes of Which Only Two Produce Sialidase. Am. J. Obstet. Gynecol. 2011, 204, 450.e1–450.e7. [Google Scholar] [CrossRef]
- Gelber, S.E.; Aguilar, J.L.; Lewis, K.L.T.; Ratner, A.J. Functional and Phylogenetic Characterization of Vaginolysin, the Human-Specific Cytolysin from Gardnerella Vaginalis. J. Bacteriol. 2008, 190, 3896–3903. [Google Scholar] [CrossRef]
- Briselden, A.M.; Moncla, B.J.; Stevens, C.E.; Hillier, S.L. Sialidases (Neuraminidases) in Bacterial Vaginosis and Bacterial Vaginosis-Associated Microflora. J. Clin. Microbiol. 1992, 30, 663. [Google Scholar] [CrossRef] [PubMed]
- Cauci, S.; Monte, R.; Ropele, M.; Missero, C.; Not, T.; Quadrifoglio, F.; Menestrina, G. Pore-Forming and Haemolytic Properties of the Gardnerella Vaginalis Cytolysin. Mol. Microbiol. 1993, 9, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Pleckaityte, M.; Janulaitiene, M.; Lasickiene, R.; Zvirbliene, A. Genetic and Biochemical Diversity of Gardnerella Vaginalis Strains Isolated from Women with Bacterial Vaginosis. FEMS Immunol. Med. Microbiol. 2012, 65, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, X.; Ye, S.; Liu, J.; Yuan, H.; Wang, N. Biofilm and Pathogenic Factor Analysis of Gardnerella Vaginalis Associated with Bacterial Vaginosis in Northeast China. Front. Microbiol. 2022, 13, 1033040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lu, M.; Zhu, X.; Wang, K.; Jie, X.; Li, T.; Dong, H.; Li, R.; Zhang, F.; Gu, L. Antibiotic Resistance and Pathogenicity Assessment of Various Gardnerella Sp. Strains in Local China. Front. Microbiol. 2022, 13, 1009798. [Google Scholar] [CrossRef] [PubMed]
- Schuyler, J.A.; Chadwick, S.G.; Mordechai, E.; Adelson, M.E.; Gygax, S.E.; Hilbert, D.W. Draft Genome Sequence of a Metronidazole-Resistant Gardnerella Vaginalis Isolate. Genome Announc. 2015, 3, e00992-15. [Google Scholar] [CrossRef] [PubMed]
- Bochner, B.R.; Huang, H.C.; Schieven, G.L.; Ames, B.N. Positive Selection for Loss of Tetracycline Resistance. J. Bacteriol. 1980, 143, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Hongo, J.A.; de Castro, G.M.; Cintra, L.C.; Zerlotini, A.; Lobo, F.P. POTION: An End-to-End Pipeline for Positive Darwinian Selection Detection in Genome-Scale Data through Phylogenetic Comparison of Protein-Coding Genes. BMC Genom. 2015, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.; Bollback, J.P.; Dimmic, M.; Hubisz, M.; Nielsen, R. Genes under Positive Selection in Escherichia Coli. Genome Res. 2007, 17, 1336–1343. [Google Scholar] [CrossRef]
- Lefébure, T.; Stanhope, M.J. Pervasive, Genome-Wide Positive Selection Leading to Functional Divergence in the Bacterial Genus Campylobacter. Genome Res. 2009, 19, 1224–1232. [Google Scholar] [CrossRef]
- Soyer, Y.; Orsi, R.H.; Rodriguez-Rivera, L.D.; Sun, Q.; Wiedmann, M. Genome Wide Evolutionary Analyses Reveal Serotype Specific Patterns of Positive Selection in Selected Salmonella Serotypes. BMC Evol. Biol. 2009, 9, 1–18. [Google Scholar] [CrossRef]
- Pleckaityte, M.; Zilnyte, M.; Zvirbliene, A. Insights into the CRISPR/Cas System of Gardnerella Vaginalis. BMC Microbiol. 2012, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Earl, J.; Retchless, A.; Hillier, S.L.; Rabe, L.K.; Cherpes, T.L.; Powell, E.; Janto, B.; Eutsey, R.; Luisa Hiller, N.; et al. Comparative Genomic Analyses of 17 Clinical Isolates of Gardnerella Vaginalis Provide Evidence of Multiple Genetically Isolated Clades Consistent with Subspeciation into Genovars. J. Bacteriol. 2012, 194, 3922–3937. [Google Scholar] [CrossRef] [PubMed]
- Giacchetto Felice, A.; Guimarães Sousa, E.; Vieira Dominici, F.; Ariston de Carvalho Azevedo, V.; de Castro Soares, S. Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella Vaginalis: An In Silico Approach. Venereology 2023, 2, 132–146. [Google Scholar] [CrossRef]
- Tarracchini, C.; Lugli, G.A.; Mancabelli, L.; Milani, C.; Turroni, F.; Ventura, M. Assessing the Genomic Variability of Gardnerella Vaginalis through Comparative Genomic Analyses: Evolutionary and Ecological Implications. Appl. Environ. Microbiol. 2020, 87, e02188-20. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving Fundamental Biases in Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Kim, Y.; Gu, C.; Kim, H.U.; Lee, S.Y. Current Status of Pan-Genome Analysis for Pathogenic Bacteria. Curr. Opin. Biotechnol. 2020, 63, 54–62. [Google Scholar] [CrossRef]
- Gao, F.; Chen, C.; Arab, D.A.; Du, Z.; He, Y.; Ho, S.Y.W. EasyCodeML: A Visual Tool for Analysis of Selection Using CodeML. Ecol. Evol. 2019, 9, 3891. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.C.; Silva, A.; Trost, E.; Blom, J.; Ramos, R.; Carneiro, A.; Ali, A.; Santos, A.R.; Pinto, A.C.; Diniz, C.; et al. The Pan-Genome of the Animal Pathogen Corynebacterium Pseudotuberculosis Reveals Differences in Genome Plasticity between the Biovar Ovis and Equi Strains. PLoS ONE 2013, 8, e53818. [Google Scholar] [CrossRef]
- Pacheco, L.G.; Slade, S.E.; Seyffert, N.; Santos, A.R.; Castro, T.L.; Silva, W.M.; Santos, A.V.; Santos, S.G.; Farias, L.M.; Carvalho, M.A.; et al. A Combined Approach for Comparative Exoproteome Analysis of Corynebacterium Pseudotuberculosis. BMC Microbiol. 2011, 11, 12. [Google Scholar] [CrossRef]
- Rodrigues, T.C.V.; Jaiswal, A.K.; De Sarom, A.; Oliveira, L.D.C.; Oliveira, C.J.F.; Ghosh, P.; Tiwari, S.; Miranda, F.M.; Benevides, L.D.J.; Azevedo, V.A.D.C.; et al. Reverse Vaccinology and Subtractive Genomics Reveal New Therapeutic Targets against Mycoplasma Pneumoniae: A Causative Agent of Pneumonia. R. Soc. Open Sci. 2019, 6, 190907. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Chen, Z.; Deng, X.; Gehring, A.; Ou, H.; Zhang, L.; Shi, X. PRAP: Pan Resistome Analysis Pipeline. BMC Bioinform. 2020, 21, 20. [Google Scholar] [CrossRef]
- Rodrigues, D.L.N.; Ariute, J.C.; Rodrigues da Costa, F.M.; Benko-Iseppon, A.M.; Barh, D.; Azevedo, V.; Aburjaile, F. PanViTa: Pan Virulence and ResisTance Analysis. Front. Bioinform. 2023, 3, 1070406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ou, H.Y.; Zhang, C.T. DEG: A Database of Essential Genes. Nucleic Acids Res. 2004, 32, D271–D272. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Passarelli-Araujo, H.; Palmeiro, J.K.; Moharana, K.C.; Pedrosa-Silva, F.; Dalla-Costa, L.M.; Venancio, T.M. Genomic Analysis Unveils Important Aspects of Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella Aerogenes. FEBS J. 2019, 286, 3797–3810. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Applying and Improving AlphaFold at CASP14. Proteins Struct. Funct. Bioinform. 2021, 89, 1711–1721. [Google Scholar] [CrossRef]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein Structure Refinement Driven by Side-Chain Repacking. Nucleic Acids Res. 2013, 41, W384. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. ProteinsPlus: A Web Portal for Structure Analysis of Macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, A.; Gupta, U. Molecular Docking Studies on the Anti-Fungal Activity of Allium Sativum (Garlic) Against Mucormycosis (Black Fungus) by BIOVIA Discovery Studio Visualizer 21.1.0.0. Ann. Antivir. Antiretrovir. 2021, 5, 28–32. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Chen, T.; Li, R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front. Cell. Infect. Microbiol. 2021, 11, 631972. [Google Scholar] [CrossRef]
- Schellenberg, J.J.; Patterson, M.H.; Hill, J.E. Gardnerella Vaginalis Diversity and Ecology in Relation to Vaginal Symptoms. Res. Microbiol. 2017, 168, 837–844. [Google Scholar] [CrossRef]
- Farhat, M.R.; Shapiro, B.J.; Kieser, K.J.; Sultana, R.; Jacobson, K.R.; Victor, T.C.; Warren, R.M.; Streicher, E.M.; Calver, A.; Sloutsky, A.; et al. Genomic Analysis Identifies Targets of Convergent Positive Selection in Drug-Resistant Mycobacterium Tuberculosis. Nat. Genet. 2013, 45, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Myers, R.A.; Jiang, H.; Liu, S.; Ricklefs, S.; Waisberg, M.; Chotivanich, K.; Wilairatana, P.; Krudsood, S.; White, N.J.; et al. Plasmodium Falciparum Genome-Wide Scans for Positive Selection, Recombination Hot Spots and Resistance to Antimalarial Drugs. Nat. Genet. 2010, 42, 268–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Tatsuno, I.; Okada, R.; Hata, N.; Matsumoto, M.; Isaka, M.; Isobe, K.I.; Hasegawa, T. Predominant Role of Msr(D) over Mef(A) in Macrolide Resistance in Streptococcus Pyogenes. Microbiology 2016, 162, 46–52. [Google Scholar] [CrossRef]
- Ammor, M.S.; Gueimonde, M.; Danielsen, M.; Zagorec, M.; Van Hoek, A.H.A.M.; De Los Reyes-Gavilán, C.G.; Mayo, B.; Margolles, A. Two Different Tetracycline Resistance Mechanisms, Plasmid-Carried Tet(L) and Chromosomally Located Transposon-Associated Tet(M), Coexist in Lactobacillus Sakei Rits 9. Appl. Environ. Microbiol. 2008, 74, 1394–1401. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Woody, J.; Hunt, C.; Budd, W. Antimicrobial Resistance Genes and Modelling of Treatment Failure in Bacterial Vaginosis: Clinical Study of 289 Symptomatic Women. J. Med. Microbiol. 2016, 65, 377–386. [Google Scholar] [CrossRef]
- Rosca, A.S.; Castro, J.; Sousa, L.G.V.; Cerca, N. Gardnerella and Vaginal Health: The Truth Is out There. FEMS Microbiol. Rev. 2020, 44, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Decano, A.G.; Pettigrew, K.; Sabiiti, W.; Sloan, D.J.; Neema, S.; Bazira, J.; Kiiru, J.; Onyango, H.; Asiimwe, B.; Holden, M.T.G. Pan-Resistome Characterization of Uropathogenic Escherichia Coli and Klebsiella Pneumoniae Strains Circulating in Uganda and Kenya, Isolated from 2017–2018. Antibiotics 2021, 10, 1547. [Google Scholar] [CrossRef] [PubMed]
- Peraman, R.; Sure, S.K.; Dusthackeer, V.N.A.; Chilamakuru, N.B.; Yiragamreddy, P.R.; Pokuri, C.; Kutagulla, V.K.; Chinni, S. Insights on Recent Approaches in Drug Discovery Strategies and Untapped Drug Targets against Drug Resistance. Futur. J. Pharm. Sci. 2021, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Switzer, A.; Burchell, L.; Mitsidis, P.; Thurston, T.; Wigneshweraraj, S. A Role for the RNA Polymerase Gene Specificity Factor Σ54 in the Uniform Colony Growth of Uropathogenic Escherichia Coli. J. Bacteriol. 2022, 204, e00031-22. [Google Scholar] [CrossRef]
- Ganapathy, S.; Wiegard, J.C.; Hartmann, R.K. Rapid Preparation of 6S RNA-Free B. Subtilis ΣA-RNA Polymerase and ΣA. J. Microbiol. Methods 2021, 190, 106324. [Google Scholar] [CrossRef]
- Haupenthal, J.; Kautz, Y.; Elgaher, W.A.M.; Pätzold, L.; Röhrig, T.; Laschke, M.W.; Tschernig, T.; Hirsch, A.K.H.; Molodtsov, V.; Murakami, K.S.; et al. Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus Aureus-Based Wound Infection Model in SKH1 Mice. ACS Infect. Dis. 2020, 6, 2573–2581. [Google Scholar] [CrossRef] [PubMed]
- Mukinda, F.K.; Theron, D.; Van Der Spuy, G.D.; Jacobson, K.R.; Roscher, M.; Streicher, E.M.; Musekiwa, A.; Coetzee, G.J.; Victor, T.C.; Marais, B.J.; et al. Rise in Rifampicin-Monoresistant Tuberculosis in Western Cape, South Africa. Int. J. Tuberc. Lung Dis. 2012, 16, 196–202. [Google Scholar] [CrossRef]
- Caputo, A.; Sartini, S.; Levati, E.; Minato, I.; Elisi, G.M.; Di Stasi, A.; Guillou, C.; Goekjian, P.G.; Garcia, P.; Gueyrard, D.; et al. An Optimized Workflow for the Discovery of New Antimicrobial Compounds Targeting Bacterial RNA Polymerase Complex Formation. Antibiotics 2022, 11, 1449. [Google Scholar] [CrossRef] [PubMed]
- Burian, J.; Yim, G.; Hsing, M.; Axerio-Cilies, P.; Cherkasov, A.; Spiegelman, G.B.; Thompson, C.J. The Mycobacterial Antibiotic Resistance Determinant WhiB7 Acts as a Transcriptional Activator by Binding the Primary Sigma Factor SigA (RpoV). Nucleic Acids Res. 2013, 41, 10062–10076. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Microbiologia de Brock, 14th ed.; Artmed Editora: Porto Alegre, Brazil; Available online: https://books.google.com.br/books/about/Microbiologia_de_Brock_14a_Edição.html?hl=pt-BR&id=fk_WCwAAQBAJ&redir_esc=y (accessed on 26 December 2023).
- Amera, G.M.; Khan, R.J.; Pathak, A.; Jha, R.K.; Jain, M.; Muthukumaran, J.; Singh, A.K. Structure Based Drug Designing and Discovery of Promising Lead Molecules against UDP-N-Acetylenolpyruvoylglucosamine Reductase (MurB): A Potential Drug Target in Multi-Drug Resistant Acinetobacter Baumannii. J. Mol. Graph. Model. 2020, 100, 107675. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Ma, Q.; Liu, X.; Hao, Y.; Li, Y.; Xu, Q.; Xie, X.; Chen, N. Double Deletion of MurA and MurB Induced Temperature Sensitivity in Corynebacterium Glutamicum. Bioengineered 2019, 10, 548–560. [Google Scholar] [CrossRef]
- Amiranashvili, L.; Nadaraia, N.; Merlani, M.; Kamoutsis, C.; Petrou, A.; Geronikaki, A.; Pogodin, P.; Druzhilovskiy, D.; Poroikov, V.; Ciric, A.; et al. Antimicrobial Activity of Nitrogen-Containing 5-α-Androstane Derivatives: In Silico and Experimental Studies. Antibiotics 2020, 9, 224. [Google Scholar] [CrossRef]
Assembly Accession | Organism Name | Assembly BioSample Accession |
---|---|---|
GCF_002861965.1 | Gardnerella vaginalis UMB0386 | SAMN08193674 |
GCF_001049785.1 | Gardnerella vaginalis 3549624 | SAMN03801593 |
GCF_001278345.1 | Gardnerella vaginalis 14019_MetR | SAMN04014465 |
GCF_001546455.1 | Gardnerella vaginalis GED7760B | SAMN03851015 |
GCF_001546485.1 | Gardnerella vaginalis PSS_7772B | SAMN03851016 |
GCF_001563665.1 | Gardnerella vaginalis CMW7778B | SAMN03851013 |
GCF_001660735.1 | Gardnerella vaginalis 23-12 | SAMN04625558 |
GCF_001660755.1 | Gardnerella vaginalis 18-4 | SAMN04625602 |
GCF_001913835.1 | Gardnerella vaginalis ATCC 49145 | SAMN05757759 |
GCF_002206225.1 | Gardnerella vaginalis FDAARGOS_296 | SAMN06173309 |
GCF_002861165.1 | Gardnerella vaginalis UMB0061 | SAMN08193668 |
GCF_002861925.1 | Gardnerella vaginalis UMB0775 | SAMN08193678 |
GCF_002861945.1 | Gardnerella vaginalis UMB0770 | SAMN08193677 |
GCF_002861975.1 | Gardnerella vaginalis UMB0298 | SAMN08193676 |
GCF_002862005.1 | Gardnerella vaginalis UMB0032B | SAMN08193675 |
GCF_002862015.1 | Gardnerella vaginalis UMB0032A | SAMN08193673 |
GCF_002862045.1 | Gardnerella vaginalis UMB0233 | SAMN08193672 |
GCF_002884835.1 | Gardnerella vaginalis UMB0768 | SAMN07511408 |
GCF_002894105.1 | Gardnerella vaginalis DNF01149 | SAMN05578253 |
GCF_002896555.1 | Gardnerella vaginalis KA00225 | SAMN05578087 |
GCF_003034925.1 | Gardnerella vaginalis ATCC 49145 | SAMN08644262 |
GCF_003369875.1 | Gardnerella vaginalis KA00225 | SAMN03145604 |
GCF_003369895.1 | Gardnerella vaginalis N101 | SAMN03145579 |
GCF_003369935.1 | Gardnerella vaginalis N153 | SAMN03145603 |
GCF_003369965.1 | Gardnerella vaginalis N95 | SAMN03145504 |
GCF_003397605.1 | Gardnerella vaginalis UGent 25.49 | SAMN09373179 |
GCF_003397665.1 | Gardnerella vaginalis UGent 09.07 | SAMN09373175 |
GCF_003408745.1 | Gardnerella vaginalis GH015 | SAMN04446401 |
GCF_003408775.1 | Gardnerella vaginalis N160 | SAMN04446403 |
GCF_003408785.1 | Gardnerella vaginalis N165 | SAMN04446402 |
GCF_003408835.1 | Gardnerella vaginalis N144 | SAMN04446400 |
GCF_003408845.1 | Gardnerella vaginalis NR010 | SAMN04446404 |
GCF_003585655.1 | Gardnerella vaginalis NR038 | SAMN07490630 |
GCF_003585755.1 | Gardnerella vaginalis NR039 | SAMN07490631 |
GCF_003812765.1 | Gardnerella vaginalis FDAARGOS_568 | SAMN10163192 |
GCF_004336715.1 | Gardnerella vaginalis 14018c | SAMN11037839 |
GCF_013315005.1 | Gardnerella vaginalis UMB0143 | SAMN15064064 |
GCF_013315025.1 | Gardnerella vaginalis UMB0736 | SAMN15064063 |
GCF_013315045.1 | Gardnerella vaginalis UMB0540 | SAMN15064062 |
GCF_013315075.1 | Gardnerella vaginalis UMB0202 | SAMN15064060 |
GCF_013315085.1 | Gardnerella vaginalis UMB0358 | SAMN15064061 |
GCF_013315115.1 | Gardnerella vaginalis UMB0558 | SAMN15064059 |
GCF_014857145.1 | Gardnerella vaginalis 06-12-0010 | SAMN16294983 |
GCF_023016185.1 | Gardnerella vaginalis KC2 | SAMN23424279 |
GCF_023016205.1 | Gardnerella vaginalis KC1 | SAMN23424278 |
GCF_023016225.1 | Gardnerella vaginalis KC4 | SAMN23424281 |
GCF_023016245.1 | Gardnerella vaginalis KC3 | SAMN23424280 |
GCF_023277565.1 | Gardnerella vaginalis JNFY17 | SAMN21246408 |
GCF_023277605.1 | Gardnerella vaginalis JNFY14 | SAMN21246406 |
GCF_023277625.1 | Gardnerella vaginalis JNFY13 | SAMN21246405 |
GCF_023277645.1 | Gardnerella vaginalis JNFY11 | SAMN21246404 |
GCF_023277665.1 | Gardnerella vaginalis JNFY9 | SAMN21246403 |
GCF_023277685.1 | Gardnerella vaginalis JNFY4 | SAMN21246402 |
GCF_023277725.1 | Gardnerella vaginalis JNFY1 | SAMN21246400 |
GCF_030213965.1 | Gardnerella vaginalis UMB9230 | SAMN34996711 |
GCF_030215405.1 | Gardnerella vaginalis UMB6972 | SAMN34996565 |
GCF_030216615.1 | Gardnerella vaginalis UMB6789 | SAMN34996560 |
GCF_030217865.1 | Gardnerella vaginalis UMB1190A | SAMN34996494 |
GCF_030218185.1 | Gardnerella vaginalis UMB1019 | SAMN34996474 |
GCF_030228365.1 | Gardnerella vaginalis UMB1218B | SAMN35153957 |
GCF_030228445.1 | Gardnerella vaginalis UMB1190B | SAMN35153955 |
GCF_030233905.1 | Gardnerella vaginalis UMB10121 | SAMN35153918 |
GCF_900105405.1 | Gardnerella vaginalis DSM 4944 | SAMN04488545 |
GCF_900637625.1 | Gardnerella vaginalis NCTC10287 | SAMEA4535760 |
GCF_000263555.1 | Gardnerella vaginalis 0288E | SAMN02393775 |
GCF_000263495.1 | Gardnerella vaginalis 1400E | SAMN02393779 |
GCF_000263595.1 | Gardnerella vaginalis 1500E | SAMN02393780 |
GCF_000263435.1 | Gardnerella vaginalis 284V | SAMN02393773 |
GCF_000214315.1 | Gardnerella vaginalis 315-A | SAMN00138210 |
GCF_000165635.1 | Gardnerella vaginalis 41V | SAMN02472074 |
GCF_000263475.1 | Gardnerella vaginalis 55152 | SAMN02393778 |
GCF_000263655.1 | Gardnerella vaginalis 6119V5 | SAMN02393784 |
GCF_000263535.1 | Gardnerella vaginalis 75712 | SAMN02393774 |
GCF_000178355.1 | Gardnerella vaginalis ATCC 14018 | SAMN02471014 |
GCF_001042655.1 | Gardnerella vaginalis ATCC 14018 | SAMD00061047 |
GCF_003397685.1 | Gardnerella vaginalis ATCC 14018 | SAMN09373172 |
GCF_004336685.1 | Gardnerella vaginalis ATCC 14018 | SAMN11037755 |
GCF_000159155.2 | Gardnerella vaginalis ATCC 14019 | SAMN00001462 |
GCF_000213955.1 | Gardnerella vaginalis HMP9231 | SAMN00100736 |
GCF_000414705.1 | Gardnerella vaginalis JCP7275 | SAMN02436832 |
GCF_000414685.1 | Gardnerella vaginalis JCP7276 | SAMN02436904 |
GCF_000414645.1 | Gardnerella vaginalis JCP7672 | SAMN02436831 |
GCF_000414525.1 | Gardnerella vaginalis JCP8108 | SAMN02436830 |
GCF_000414465.1 | Gardnerella vaginalis JCP8481A | SAMN02436910 |
GCF_000414445.1 | Gardnerella vaginalis JCP8481B | SAMN02436829 |
GCF_000263615.1 | Gardnerella vaginalis 00703Bmash | SAMN02393781 |
GCF_000263515.1 | Gardnerella vaginalis 00703Cmash | SAMN02393782 |
GCF_000263635.1 | Gardnerella vaginalis 00703Dmash | SAMN02393783 |
GCF_000414665.1 | Gardnerella vaginalis JCP7659 | SAMN02436712 |
GCF_000414625.1 | Gardnerella vaginalis JCP7719 | SAMN02436711 |
GCF_000414605.1 | Gardnerella vaginalis JCP8017A | SAMN02436912 |
GCF_000414585.1 | Gardnerella vaginalis JCP8017B | SAMN02436773 |
GCF_001546445.1 | Gardnerella vaginalis GED7275B | SAMN03851014 |
GCF_002861905.1 | Gardnerella vaginalis UMB0830 | SAMN08193679 |
GCF_002861885.1 | Gardnerella vaginalis UMB0833 | SAMN08193680 |
GCF_002884775.1 | Gardnerella vaginalis UMB1686 | SAMN07511412 |
GCF_000165615.1 | Gardnerella vaginalis 101 | SAMN02472073 |
Protein | ZINC Compounds | Auto Dock Vina | Hbonds Number | Residue | Ångström (Å) |
---|---|---|---|---|---|
WP_004132099.1 | DLNC_ZINC08635277 | −9.68 | 1 | THR 250 | 2.291 Å |
WP_004131683.1 | DLNC_ZINC03840479 | −9.689 | 3 | LYS 166 PHE 202 LEU 51 | 2.123 Å 2.327 Å 2.227 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, E.G.; Felice, A.G.; Dominici, F.V.; Jaiswal, A.K.; Pedrosa, M.L.C.; Reis, L.P.; Gomes, L.G.R.; Azevedo, V.A.d.C.; Soares, S.d.C. Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis. Venereology 2024, 3, 120-135. https://doi.org/10.3390/venereology3030010
Sousa EG, Felice AG, Dominici FV, Jaiswal AK, Pedrosa MLC, Reis LP, Gomes LGR, Azevedo VAdC, Soares SdC. Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis. Venereology. 2024; 3(3):120-135. https://doi.org/10.3390/venereology3030010
Chicago/Turabian StyleSousa, Eduarda Guimarães, Andrei Giacchetto Felice, Fabiana Vieira Dominici, Arun Kumar Jaiswal, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Lucas Gabriel Rodrigues Gomes, Vasco Ariston de Carvalho Azevedo, and Siomar de Castro Soares. 2024. "Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis" Venereology 3, no. 3: 120-135. https://doi.org/10.3390/venereology3030010
APA StyleSousa, E. G., Felice, A. G., Dominici, F. V., Jaiswal, A. K., Pedrosa, M. L. C., Reis, L. P., Gomes, L. G. R., Azevedo, V. A. d. C., & Soares, S. d. C. (2024). Unveiling Resistance and Virulence Mechanisms under Darwinian Positive Selection for Novel Drug Discovery for Gardnerella vaginalis. Venereology, 3(3), 120-135. https://doi.org/10.3390/venereology3030010