Effect of Microstructure on Multiscale Mechanical Properties of Scalmalloy Produced by Powder Bed Fusion-Laser Beam
Abstract
:1. Introduction
2. Experimental
2.1. Materials
Selective Laser Melting (PBF-LB) Scalmalloy
2.2. Microstructure
2.3. Mechanical Tests
2.3.1. Tensile Testing
2.3.2. Nanoindentation
3. Results
3.1. Tensile Test and Fracture Surface
3.1.1. Tensile Test
3.1.2. Fracture Surface
3.2. Microstructure
3.2.1. Porosity
3.2.2. Grain Structure and Distribution
3.2.3. Precipitates
3.3. Local Mechanical Properties
4. Discussion
4.1. Effect of Porosity
4.2. Strengthening Mechanism
4.3. Effect of Microstructure on Elongation
5. Conclusions
- (1)
- Yield strength of 450 MPa at 0.2% is insensitive to porosity when density is above 95%, while the size of pores is above hundreds of micrometres, and the elongation is severely reduced from average of 11.5% to 4.5%.
- (2)
- Characteristic two distinct regions of fine and coarse grained (bimodal) microstructure and associated precipitates are observed with SEM and EBSD, which are affected by hatch distance.
- (3)
- The high strength is attributed to the synergy of multiple strengthening mechanisms composed of solid-solute, grain refinement, precipitates, and dislocations.
- (4)
- The local mechanical variation (i.e., average hardness of about 6%) is measured with nanoindentation mapping, which is explained by different strengthening mechanisms.
- (5)
- Through discussions and analysis, the current work concludes that the a balance between grain refinement and precipitates reflected from small variations in hardness distribution would increase elongation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidtke, K.; Palm, F.; Hawkins, A.; Emmelmann, C. Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing. Phys. Procedia 2011, 12, 369–374. [Google Scholar] [CrossRef]
- Koutny, D.; Skulina, D.; Pantělejev, L.; Paloušek, D.; Lenczowski, B.; Palm, F.; Nick, A. Processing of Al-Sc aluminum alloy using SLM technology. Procedia CIRP 2018, 74, 44–48. [Google Scholar] [CrossRef]
- Martucci, A.; Aversa, A.; Manfredi, D.; Bondioli, F.; Biamino, S.; Ugues, D.; Lombardi, M.; Fino, P. Low-Power Laser Powder Bed Fusion Processing of Scalmalloy®. Materials 2022, 15, 3123. [Google Scholar] [CrossRef] [PubMed]
- Spierings, A.B.; Dawson, K.; Heeling, T.; Uggowitzer, P.J.; Schäublin, R.; Palm, F.; Wegener, K. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater. Des. 2017, 115, 52–63. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Voegtlin, M.; Palm, F.; Uggowitzer, P.J. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. CIRP Ann. 2016, 65, 213–216. [Google Scholar] [CrossRef]
- Phillips, M.A.; Clemens, B.M.; Nix, W.D. Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 2003, 51, 3171–3184. [Google Scholar] [CrossRef]
- Spierings, A.B. SLM-processed Sc- and Zr- modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment. Mater. Sci. Eng. A 2017, 701, 264–273. [Google Scholar] [CrossRef]
- Best, J.P.; Maeder, X.; Michler, J.; Spierings, A.B. Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al-Mg alloy microstructure. Adv. Eng. Mater. 2019, 21, 1801113. [Google Scholar] [CrossRef]
- Turangi, C.; Häslich, F.; Schaefer, M.; Nomani, J.; Pasang, T.; Jehring, U.; Weißgärber, T. Mechanical properties and microstructure of cold-rolled Scalmalloy® (Al-4.5Mg-0.6Sc-0.3Zr alloy) at a low reduction in thickness. J. Phys. Conf. Ser. 2022, 2345, 012028. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Yang, C.-H.; Kumar, M.S. Influence of coherent intermetallic nano-precipitates on the nano-level mechanical and tribological properties of the Laser-Powder bed fused Scalmalloy. Mater. Charact. 2022, 193, 112269. [Google Scholar] [CrossRef]
- Awd, M.; Tenkamp, J.; Hirtler, M.; Siddique, S.; Bambach, M.; Walther, F. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition. Materials 2017, 11, 17. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Uggowitzer, P.J.; Wegener, K. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys. Mater. Des. 2018, 140, 134–143. [Google Scholar] [CrossRef]
- Kuo, C.N.; Peng, P.C.; Liu, D.H.; Chao, C.Y. Microstructure Evolution and Mechanical Property Response of 3D-Printed Scalmalloy with Different Heat-Treatment Times at 325 °C. Metals 2021, 11, 555. [Google Scholar] [CrossRef]
- Ekubaru, Y.; Gokcekaya, O.; Ishimoto, T.; Sato, K.; Manabe, K.; Wang, P.; Nakano, T. Excellent strength–Ductility balance of Sc-Zr-modified Al–Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion. Mater. Des. 2022, 221, 110976. [Google Scholar] [CrossRef]
- Kuo, C.N.; Peng, P.C. The strengthening mechanism synergy of heat-treated 3D printed Al-Sr alloy. Virtual Phys. Prototyp. 2023, 18, 2166539. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Tuck, C.; Ashcroft, I.; Maskery, I.; Everitt, N.M. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg. Metall. Mater. Trans. A 2015, 46, 3337–3341. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, L.; Wang, J.; Yao, Q.; Rao, G.; Zhou, H. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-(Mg) series casting alloys designed by computational thermodynamics. J. Alloys Compd. 2019, 805, 415–425. [Google Scholar] [CrossRef]
- Cabrera-Correa, L.; González-Rovira, L.; López-Castro, J.d.D.; Castillo-Rodríguez, M.; Botana, F.J. Effect of the heat treatment on the mechanical properties and microstructure of Scalmalloy® manufactured by Selective Laser Melting (SLM) under certified conditions. Mater. Charact. 2023, 196, 112549. [Google Scholar] [CrossRef]
- Bonini, J.; Fournier, S.; Burshtyn, D.; Trenkle, J. Hardness Mapping of 3D Printed Aluminium. 2023. Available online: https://www.azom.com/article.aspx?ArticleID=21575 (accessed on 10 October 2024).
- Ovri, H.; Lilleodden, E.T. Temperature dependence of plastic instability in Al alloys: A nanoindentation study. Mater. Des. 2017, 125, 69–75. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Xu, W.; Liang, Z. Correlations between the plastic instabilities occuring in indentation and the Portevin Le-Chatelier effect in uniaxial tension. Mater. Sci. Eng. A 2022, 10, 143799. [Google Scholar] [CrossRef]
- Beamler. Scalmalloy: High Performance Aluminum for 3D Printing; Beamler: Amsterdam, The Netherlands, 2020; Available online:https://www.beamler.com/scalmalloy-high-performance-aluminum-for-3d-printing/ (accessed on 10 October 2024).
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564. [Google Scholar] [CrossRef]
- Nezhadfar, P.D.; Thompson, S.; Saharan, A.; Phan, N.; Shamsaei, N. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior. Addit. Manuf. 2021, 47, 102292. [Google Scholar] [CrossRef]
- Schimbäck, D.; Mair, P.; Kaserer, L.; Perfler, L.; Palm, F.; Leichtfried, G.; Pogatscher, S. An Improved Process Scan Strategy to Obtain High-Performance Fatigue Properties for Scalmalloy®. Mater. Des. 2022, 224, 111410. [Google Scholar] [CrossRef]
- Schuh, C.A. Nanoindentation studies of materials. Mater. Today 2006, 9, 32–40. [Google Scholar] [CrossRef]
- Jakkula, P.; Ganzenmüller, G.; Gutmann, F.; Pfaff, A.; Mermagen, J.; Hiermaier, S. Strain rate sensititivy of the additive manufacturing material Scalmalloy. J. Dyn. Behav. Mater. 2021, 7, 518–525. [Google Scholar] [CrossRef]
- Kurnsteiner, P.; Bajaj, P.; Gupta, A.; Benjamin, W.; Weisheit, A.; Li, X.; Leinebach, C.; Gault, B.; Jagle, E.; Raabe, D. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys. Addit. Manf. 2020, 32, 100910. [Google Scholar] [CrossRef]
- Lee, C.D.; Shin, K.S. Constitutive prediction of the defect susceptibility of tensile properties to microporosity variation in A356 aluminum alloy. Mater. Sci. Eng. A 2014, 599, 223–232. [Google Scholar] [CrossRef]
- Laursen, C.M.; DeJong, S.A.; Dickens, S.M.; Exil, A.N.; Susan, D.F.; Carroll, J.D. Relationship between ductility and the porosity of additively manufactured AlSi10Mg. Mater. Sci. Eng. A 2020, 795, 139922. [Google Scholar] [CrossRef]
- Salandari-Rabori, A.; Wang, P.; Dong, Q.; Fallah, V. Enhancing as-built microstructural integrity and tensile properties in laser powder bed fusion of AlSi10Mg alloy using a comprehensive parameter optimization procedure. Mater. Sci. Eng. A 2021, 805, 140620. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2015, 102, 187–196. [Google Scholar] [CrossRef]
- Kamikawa, N.; Sato, K.; Miyamoto, G.; Murayama, M.; Sekido, N.; Tsuzaki, K.; Furuhara, T. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels. Acta Mater. 2015, 83, 383. [Google Scholar] [CrossRef]
- Fan, G.; Choo, H.; Liaw, P.; Lavernia, E. Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution. Acta Mater. 2006, 54, 1759–1766. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhou, X.; Shen, Z.; Liu, W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 2019, 168, 107677. [Google Scholar] [CrossRef]
Sample ID | Velocity (mm/s) | Hatch Distance | Relative Print Speed ** | Density (g/cm3) | |
---|---|---|---|---|---|
X (mm) | Y (mm) | ||||
S1 | 875 | 0.175 | 0.020 | 109% | 2.6578 |
S2 * | 1250 | 0.1125 | 0.009 | 100% | 2.6473 |
S3 | 1250 | 0.175 | 0.014 | 156% | 2.6037 |
S4 | 875 | 0.3 | 0.034 | 187% | 2.6036 |
S5 | 1250 | 0.3 | 0.024 | 267% | 2.5062 |
S6 | 2000 | 0.175 | 0.009 | 249% | 2.4582 |
S7 | 2000 | 0.3 | 0.015 | 427% | 2.3375 |
Strengthening Mechanisms | Parameters | (MPa) |
---|---|---|
Hall-Petch | k is 0.17 mN/m3/2 (FG grain size 1.3 and CG grain size 4.5 µm) | 68 |
Dislocation strengthening | dislocation density | −10 |
Precipitate strengthening | is the interparticle/precipitate spacing | −12 |
Combined | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Green, C.E.R.; Lodeiro, M.J.; Woolliams, P.; Mingard, K.P.; Fry, A.T. Effect of Microstructure on Multiscale Mechanical Properties of Scalmalloy Produced by Powder Bed Fusion-Laser Beam. Alloys 2025, 4, 1. https://doi.org/10.3390/alloys4010001
Zhang H, Green CER, Lodeiro MJ, Woolliams P, Mingard KP, Fry AT. Effect of Microstructure on Multiscale Mechanical Properties of Scalmalloy Produced by Powder Bed Fusion-Laser Beam. Alloys. 2025; 4(1):1. https://doi.org/10.3390/alloys4010001
Chicago/Turabian StyleZhang, Huixing (Hannah), Caitlin E. R. Green, Maria J. Lodeiro, Peter Woolliams, Ken P. Mingard, and Antony T. Fry. 2025. "Effect of Microstructure on Multiscale Mechanical Properties of Scalmalloy Produced by Powder Bed Fusion-Laser Beam" Alloys 4, no. 1: 1. https://doi.org/10.3390/alloys4010001
APA StyleZhang, H., Green, C. E. R., Lodeiro, M. J., Woolliams, P., Mingard, K. P., & Fry, A. T. (2025). Effect of Microstructure on Multiscale Mechanical Properties of Scalmalloy Produced by Powder Bed Fusion-Laser Beam. Alloys, 4(1), 1. https://doi.org/10.3390/alloys4010001