Applications of Serine Integrases in Synthetic Biology over the Past Decade
Abstract
:1. Introduction
2. Mechanism of Site-Specific Recombination Mediated by Serine Integrases
3. Orientation of att Sites
4. Recent Achievements of Serine Integrases in Synthetic Biology
5. Serine Integrase Applications
5.1. Genome Engineering
5.2. Biological Parts
5.3. Genetic Circuit Design
5.4. DNA Assembly
6. Serine Integrases Accelerate the Synthetic Biology Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meng, F.; Ellis, T. The second decade of synthetic biology: 2010–2020. Nat. Commun. 2020, 11, 5174. [Google Scholar] [CrossRef]
- Grindley, N.D.F.; Whiteson, K.L.; Rice, P.A. Mechanisms of Site-Specific Recombination. Annu. Rev. Biochem. 2006, 75, 567–605. [Google Scholar] [CrossRef]
- Evans, B.R.; Chen, J.-W.; Parsons, R.L.; Bauer, T.K.; Teplow, D.B.; Jayaram, M. Identification of the Active Site Tyrosine of Flp Recombinase. Possible Relevance of its Location to the Mechanism of Recombination. J. Biol. Chem. 1990, 265, 18504–18510. [Google Scholar] [CrossRef]
- Smith, M.C.A.; Till, R.; Brady, K.; Soultanas, P.; Thorpe, H.; Smith, M.C.M. Synapsis and DNA cleavage in phiC31 integrase-mediated site-specific recombination. Nucleic Acids Res. 2004, 32, 2607–2617. [Google Scholar] [CrossRef]
- Thorpe, H.M.; Smith, M.C.M. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 1998, 95, 5505–5510. [Google Scholar] [CrossRef]
- Abremski, K.; Hoess, R. Bacteriophage P1 Site-specific Recombination. Purification and Properties of the Cre Recombinase Protein. J. Biol. Chem. 1984, 259, 1509–1514. [Google Scholar] [CrossRef]
- Andrews, B.J.; Proteau, G.A.; Beatty, L.G.; Sadowski, P.D. The FLP Recombinase of the 2 micron Circle DNA of Yeast: Interaction with Its Target Sequences. Cell 1985, 40, 795–803. [Google Scholar] [CrossRef]
- Merrick, C.A.; Zhao, J.; Rosser, S.J. Serine Integrases: Advancing Synthetic Biology. ACS Synth. Biol. 2018, 7, 299–310. [Google Scholar] [CrossRef]
- Olorunniji, F.J.; McPherson, A.L.; Rosser, S.J.; Smith, M.C.M.; Colloms, S.D.; Stark, W.M. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res. 2017, 45, 8635–8645. [Google Scholar] [CrossRef]
- Stark, W.M. Making serine integrases work for us. Curr. Opin. Microbiol. 2017, 38, 130–136. [Google Scholar] [CrossRef]
- Groth, A.C.; Calos, M.P. Phage Integrases: Biology and Applications. J. Mol. Biol. 2004, 335, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sharp, R.; Rutherford, K.; Gupta, K.; Van Duyne, G.D. Serine Integrase attP Binding and Specificity. J. Mol. Biol. 2018, 430, 4401–4418. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, K.; Van Duyne, G.D. The ins and outs of serine integrase site-specific recombination. Curr. Opin. Struct. Biol. 2014, 24, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Gupta, K.; Van Duyne, G.D. Tetrameric Structure of a Serine Integrase Catalytic Domain. Structure 2008, 16, 1275–1286. [Google Scholar] [CrossRef]
- Gupta, K.; Sharp, R.; Yuan, J.B.; Li, H.; Van Duyne, G.D. Coiled-coil interactions mediate serine integrase directionality. Nucleic Acids Res. 2017, 45, 7339–7353. [Google Scholar] [CrossRef]
- Prorocic, M.M.; Wenlong, D.; Olorunniji, F.J.; Akopian, A.; Schloetel, J.-G.; Hannigan, A.; McPherson, A.L.; Stark, W.M. Zinc-finger recombinase activities in vitro. Nucleic Acids Res. 2011, 39, 9316–9328. [Google Scholar] [CrossRef]
- McEwan, A.R.; Raab, A.; Kelly, S.M.; Feldmann, J.; Smith, M.C.M. Zinc is essential for high-affinity DNA binding and recombinase activity of phiC31 integrase. Nucleic Acids Res. 2011, 39, 6137–6147. [Google Scholar] [CrossRef]
- McEwan, A.R.; Rowley, P.A.; Smith, M.C.M. DNA binding and synapsis by the large C-terminal domain of phiC31 integrase. Nucleic Acids Res. 2009, 37, 4764–4773. [Google Scholar] [CrossRef]
- Keenholtz, R.A.; Rowland, S.-J.; Boocock, M.R.; Stark, W.M.; Rice, P.A. Structural basis for catalytic activation of a serine recombinase. Structure 2011, 19, 799–809. [Google Scholar] [CrossRef]
- Chang, Y.; Johnson, R.C. Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion. Nucleic Acids Res. 2015, 43, 6459–6472. [Google Scholar] [CrossRef]
- Dhar, G.; McLean, M.M.; Heiss, J.K.; Johnson, R.C. The Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands. Nucleic Acids Res. 2009, 37, 4743–4756. [Google Scholar] [CrossRef] [PubMed]
- Trejo, C.S.; Rock, R.S.; Stark, W.M.; Boocock, M.R.; Rice, P.A. Snapshots of a molecular swivel in action. Nucleic Acids Res. 2018, 46, 5286–5296. [Google Scholar] [CrossRef] [PubMed]
- Olorunniji, F.J.; Buck, D.E.; Colloms, S.D.; McEwan, A.R.; Smith, M.C.M.; Stark, W.M.; Rosser, S.J. Gated rotation mechanism of site-specific recombination by phiC31 integrase. Proc. Natl. Acad. Sci. USA 2012, 109, 19661–19666. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Bibb, L.A.; Hatfull, G.F. Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading. Proc. Natl. Acad. Sci. USA 2008, 105, 3238–3243. [Google Scholar] [CrossRef]
- Ghosh, P.; Wasil, L.R.; Hatfull, G.F. Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor. PLoS Biol. 2006, 4, e186. [Google Scholar] [CrossRef]
- Fan, H.-F.; Hsieh, T.-S.; Ma, C.-H.; Jayaram, M. Single-molecule analysis of phiC31 integrase-mediated site-specific recombination by tethered particle motion. Nucleic Acids Res. 2016, 44, 10804–10823. [Google Scholar] [CrossRef]
- Khaleel, T.; Younger, E.; McEwan, A.R.; Varghese, A.S.; Smith, M.C.M. A phage protein that binds phiC31 integrase to switch its directionality. Mol. Microbiol. 2011, 80, 1450–1463. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, B.; Dai, R.; Zhao, G.; Ding, X. Control of Directionality in Streptomyces Phage phiBT1 Integrase-Mediated Site-Specific Recombination. PLoS ONE 2013, 8, e80434. [Google Scholar]
- Mandali, S.; Gupta, K.; Dawson, A.R.; Van Duyne, G.D.; Johnson, R.C. Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase. J. Bacteriol. 2017, 199, e00019-17. [Google Scholar] [CrossRef]
- Breuner, A.; Brondsted, L.; Hammer, K. Novel Organization of Genes Involved in Prophage Excision Identified in the Temperate Lactococcal Bacteriophage TP901-1. J. Bacteriol. 1999, 181, 7291–7297. [Google Scholar] [CrossRef]
- Marken, J.P.; Murray, R.M. Addressable and adaptable intercellular communication via DNA messaging. Nat. Commun. 2023, 14, 2358. [Google Scholar] [CrossRef]
- Colloms, S.D.; Merrick, C.A.; Olorunniji, F.J.; Stark, W.M.; Smith, M.C.M.; Osbourn, A.; Keasling, J.D.; Rosser, S.J. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. Nucleic Acids Res. 2014, 42, e23. [Google Scholar] [CrossRef]
- Neil, K.; Allard, N.; Jordan, D.; Rodrigue, S. Assembly of large mobilizable genetic cargo by double recombinase operated insertion of DNA (DROID). Plasmid 2019, 104, 102419. [Google Scholar] [CrossRef]
- Gardner, T.S.; Cantor, C.R.; Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403, 339–342. [Google Scholar] [CrossRef]
- Elowitz, M.B.; Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403, 335–338. [Google Scholar] [CrossRef]
- Bonnet, J.; Subsoontorn, P.; Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl. Acad. Sci. USA 2012, 109, 8884–8889. [Google Scholar] [CrossRef]
- Siuti, P.; Yazbek, J.; Lu, T.K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 2013, 31, 448–452. [Google Scholar] [CrossRef]
- Bonnet, J.; Yin, P.; Ortiz, M.E.; Subsoontorn, P.; Endy, D. Amplifying Genetic Logic Gates. Science 2013, 340, 599–603. [Google Scholar] [CrossRef]
- Yang, L.; Nielsen, A.A.K.; Fernandez-Rodriguez, J.; McClune, C.J.; Laub, M.T.; Lu, T.K.; Voigt, C.A. Permanent genetic memory with >1-byte capacity. Nat. Methods 2014, 11, 1261–1266. [Google Scholar] [CrossRef]
- Siuti, P.; Yazbek, J.; Lu, T.K. Engineering genetic circuits that compute and remember. Nat. Protoc. 2014, 9, 1292–1300. [Google Scholar] [CrossRef]
- Zúñiga, A.; Guiziou, S.; Mayonove, P.; Meriem, Z.B.; Camacho, M.; Moreau, V.; Ciandrini, L.; Hersen, P.; Bonnet, J. Rational programming of history-dependent logic in cellular populations. Nat. Commun. 2020, 11, 4758. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, V.; Hori, Y.; Rothemund, P.W.; Murray, R.M. A population-based temporal logic gate for timing and recording chemical events. Mol. Syst. Biol. 2016, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Roquet, N.; Soleimany, A.P.; Ferris, A.C.; Aaronson, S.; Lu, T.K. Synthetic recombinase-based state machines in living cells. Science 2016, 353, aad8559. [Google Scholar] [CrossRef] [PubMed]
- Folliard, T.; Steel, H.; Prescott, T.P.; Wadhams, G.; Rothschild, L.J.; Papachristodoulou, A. A Synthetic Recombinase-Based Feedback Loop Results in Robust Expression. ACS Synth. Biol. 2017, 6, 1663–1671. [Google Scholar] [CrossRef]
- Guiziou, S.; Mayonove, P.; Bonnet, J. Hierarchical composition of reliable recombinase logic devices. Nat. Commun. 2019, 10, 456. [Google Scholar] [CrossRef]
- Weinberg, B.H.; Pham, N.T.H.; Caraballo, L.D.; Lozanoski, T.; Engel, A.; Bhatia, S.; Wong, W.W. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 2017, 35, 453–462. [Google Scholar] [CrossRef]
- Bland, M.J.; Ducos-Galand, M.; Val, M.-E.; Mazel, D. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly. BMC Biotechnol. 2017, 17, 62. [Google Scholar] [CrossRef]
- Zhao, J.; Pokhilko, A.; Ebenhöh, O.; Rosser, S.J.; Colloms, S.D. A single-input binary counting module based on serine integrase site-specific recombination. Nucleic Acids Res. 2019, 47, 4896–4909. [Google Scholar] [CrossRef]
- Kim, T.; Weinberg, B.; Wong, W.; Lu, T.K. Scalable recombinase-based gene expression cascades. Nat. Commun. 2021, 12, 2711. [Google Scholar] [CrossRef]
- Ba, F.; Liu, Y.; Liu, W.-Q.; Tian, X.; Li, J. SYMBIOSIS: Synthetic manipulable biobricks via orthogonal serine integrase systems. Nucleic Acids Res. 2022, 50, 2973–2985. [Google Scholar] [CrossRef]
- Williams, R.L.; Murray, R.M. Integrase-mediated differentiation circuits improve evolutionary stability of burdensome and toxic functions in E. coli. Nat. Commun. 2022, 13, 6822. [Google Scholar] [CrossRef]
- St-Pierre, F.; Cui, L.; Priest, D.G.; Endy, D.; Dodd, I.B.; Shearwin, K.E. One-Step Cloning and Chromosomal Integration of DNA. ACS Synth. Biol. 2013, 2, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, N.; De Mol, M.L.; Van Herpe, D.; Goormans, A.; Maryns, I.; Coussement, P.; Peters, G.; Beauprez, J.; De Maeseneire, S.L.; Soetaert, W. Serine integrase recombinational engineering (SIRE): A versatile toolbox for genome editing. Biotechnol. Bioeng. 2019, 116, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, M.T.N.; Ioannidi, E.I.; Schmitt-Ulms, C.; Krajeski, R.N.; Lim, J.; Villiger, L.; Zhou, W.; Jiang, K.; Garushyants, S.K.; Roberts, N.; et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 2023, 41, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Gao, X.D.; Podracky, C.J.; Nelson, A.T.; Koblan, L.W.; Raguram, A.; Levy, J.M.; Mercer, J.A.M.; Liu, D.R. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 2022, 40, 731–740. [Google Scholar] [CrossRef]
- Elmore, J.R.; Dexter, G.N.; Baldino, H.; Huenemann, J.D.; Francis, R.; Peabody, G.L.; Martinez-Baird, J.; Riley, L.A.; Simmons, T.; Coleman-Derr, D.; et al. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. Sci. Adv. 2023, 9, eade1285. [Google Scholar] [CrossRef]
- Guiziou, S.; Ulliana, F.; Moreau, V.; Leclere, M.; Bonnet, J. An Automated Design Framework for Multicellular Recombinase Logic. ACS Synth. Biol. 2018, 7, 1406–1412. [Google Scholar] [CrossRef]
- Durrant, M.G.; Fanton, A.; Tycko, J.; Hinks, M.; Chandrasekaran, S.S.; Perry, N.T.; Schaepe, J.; Du, P.P.; Lotfy, P.; Bassik, M.C.; et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 2023, 41, 488–499. [Google Scholar] [CrossRef]
- Kalyoncu, E.; Ahan, R.E.; Ozcelik, C.E.; Seker, U.O.S. Genetic Logic Gates Enable Patterning of Amyloid Nanofibers. Adv. Mater. 2019, 31, 1902888. [Google Scholar] [CrossRef]
- Avidan, N.; Levy, M.; Daube, S.S.; Bar-Ziv, R.H. Toward Memory in a DNA Brush: Site-Specific Recombination Responsive to Polymer Density, Orientation, and Conformation. J. Am. Chem. Soc. 2023, 145, 9729–9736. [Google Scholar] [CrossRef]
- Guiziou, S.; Maranas, C.J.; Chu, J.C.; Nemhauser, J.L. An integrase toolbox to record gene-expression during plant development. Nat. Commun. 2023, 14, 1844. [Google Scholar] [CrossRef]
- Bernabé-Orts, J.M.; Quijano-Rubio, A.; Vazquez-Vilar, M.; Mancheño-Bonillo, J.; Moles-Casas, V.; Selma, S.; Gianoglio, S.; Granell, A.; Orzaez, D. A memory switch for plant synthetic biology based on the phage phiC31 integration system. Nucleic Acids Res. 2020, 48, 3379–3394. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.-H.K.; Budde, M.W.; Granados, A.A.; Cabrera, M.; Yoon, S.; Cho, S.; Huang, T.-H.; Koulena, N.; Frieda, K.L.; Cai, L.; et al. Imaging cell lineage with a synthetic digital recording system. Science 2021, 372, eabb3099. [Google Scholar] [CrossRef] [PubMed]
- Inda-Webb, M.E.; Jimenez, M.; Liu, Q.; Phan, N.V.; Ahn, J.; Steiger, C.; Wentworth, A.; Riaz, A.; Zirtiloglu, T.; Wong, K.; et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023, 620, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.J.; Robinson, A.B.; Süel, G.M. Engineered E. coli that Detect and Respond to Gut Inflammation through Nitric Oxide Sensing. ACS Synth. Biol. 2012, 1, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.A.; Payne, I.C.; Tumen-Velasquez, M.; Guss, A.M. Simple and Rapid Site-Specific Integration of Multiple Heterologous DNAs into the Escherichia coli Chromosome. J. Bacteriol. 2023, 205, e0033822. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Brown, W.R.A. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnol. 2016, 16, 13. [Google Scholar] [CrossRef]
- Gomide, M.S.; Sales, T.T.; Barros, L.R.C.; Limia, C.G.; de Oliveira, M.A.; Florentino, L.H.; Barros, L.M.G.; Robledo, M.L.; José, G.P.C.; Almeida, M.S.M.; et al. Genetic switches designed for eukaryotic cells and controlled by serine integrases. Commun. Biol. 2020, 3, 255. [Google Scholar] [CrossRef]
- Pristovšek, N.; Nallapareddy, S.; Grav, L.M.; Hefzi, H.; Lewis, N.E.; Rugbjerg, P.; Hansen, H.G.; Lee, G.M.; Andersen, M.R.; Kildegaard, H.F. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth. Biol. 2019, 8, 758–774. [Google Scholar] [CrossRef]
- Gaidukov, L.; Wroblewska, L.; Teague, B.; Nelson, T.; Zhang, X.; Liu, Y.; Jagtap, K.; Mamo, S.; Tseng, W.A.; Lowe, A.; et al. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 2018, 46, 4072–4086. [Google Scholar] [CrossRef]
- Stoll, S.M.; Ginsburg, D.S.; Calos, M.P. Phage TP901-1 Site-Specific Integrase Functions in Human Cells. J. Bacteriol. 2002, 184, 3657–3663. [Google Scholar] [CrossRef] [PubMed]
- Low, B.E.; Hosur, V.; Lesbirel, S.; Wiles, M.V. Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. Sci. Rep. 2022, 12, 5424. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Kumar, S.; Thomson, J.G. Precise excision of plastid DNA by the large serine recombinase Bxb1. Plant Biotechnol. J. 2014, 12, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.G.; Chan, R.; Smith, J.; Thilmony, R.; Yau, Y.-Y.; Wang, Y.; Ow, D.W. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnol. 2012, 12, 9. [Google Scholar] [CrossRef]
- Abioye, J.; Lawson-Williams, M.; Lecanda, A.; Calhoon, B.; McQue, A.L.; Colloms, S.D.; Stark, W.M.; Olorunniji, F.J. High fidelity one-pot DNA assembly using orthogonal serine integrases. Biotechnol. J. 2023, 18, 2200411. [Google Scholar] [CrossRef]
- Gao, H.; Taylor, G.; Evans, S.K.; Fogg, P.C.M.; Smith, M.C.M. Application of serine integrases for secondary metabolite pathway assembly in Streptomyces. Synth. Syst. Biotechnol. 2020, 5, 111–119. [Google Scholar] [CrossRef]
- English, M.A.; Alcantar, M.A.; Collins, J.J. A self-propagating, barcoded transposon system for the dynamic rewiring of genomic networks. Mol. Syst. Biol. 2023, 19, e11398. [Google Scholar] [CrossRef]
- Wright, W.D.; Shah, S.S.; Heyer, W.-D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Effendi, S.S.W.; Ng, I.-S. Reprogramming T7RNA Polymerase in Escherichia coli Nissle 1917 under Specific Lac Operon for Efficient p-Coumaric Acid Production. ACS Synth. Biol. 2022, 11, 3471–3481. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Standage-Beier, K.; Brookhouser, N.; Balachandran, P.; Zhang, Q.; Brafman, D.A.; Wang, X. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR J. 2019, 2, 209–222. [Google Scholar] [CrossRef]
- Chaikind, B.; Bessen, J.L.; Thompson, D.B.; Hu, J.H.; Liu, D.R. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. 2016, 44, 9758–9770. [Google Scholar] [CrossRef]
- Anderson, J.C.; Dueber, J.E.; Leguia, M.; Wu, G.C.; Goler, J.A.; Arkin, A.P.; Keasling, J.D. BglBricks: A flexible standard for biological part assembly. J. Biol. Eng. 2010, 4, 1. [Google Scholar] [CrossRef]
- English, M.A.; Gayet, R.V.; Collins, J.J. Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond. Annu. Rev. Biochem. 2021, 90, 221–244. [Google Scholar] [CrossRef]
- Segall-Shapiro, T.H.; Meyer, A.J.; Ellington, A.D.; Sontag, E.D.; Voigt, C.A. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Mol. Syst. Biol. 2014, 10, 742. [Google Scholar] [CrossRef]
- Courbet, A.; Endy, D.; Renard, E.; Molina, F.; Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 2015, 7, 289ra83. [Google Scholar] [CrossRef]
- Lloyd, J.P.B.; Ly, F.; Gong, P.; Pflueger, J.; Swain, T.; Pflueger, C.; Fourie, E.; Khan, M.A.; Kidd, B.N.; Lister, R. Synthetic memory circuits for stable cell reprogramming in plants. Nat. Biotechnol. 2022, 40, 1862–1872. [Google Scholar] [CrossRef]
- Brophy, J.A.N.; Voigt, C.A. Principles of genetic circuit design. Nat. Methods 2014, 11, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, B.; Ye, Y.; Mao, Y.; Lei, X.; Zhao, G.; Ding, X. Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly. Acta Biochim. Biophys. Sin. 2017, 49, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Akboğa, D.; Saltepe, B.; Bozkurt, E.U.; Şeker, U.Ö.Ş. A Recombinase-Based Genetic Circuit for Heavy Metal Monitoring. Biosensors 2022, 12, 122. [Google Scholar] [CrossRef]
- Sheets, M.B.; Tague, N.; Dunlop, M.J. An optogenetic toolkit for light-inducible antibiotic resistance. Nat. Commun. 2023, 14, 1034. [Google Scholar] [CrossRef]
- Sheets, M.B.; Wong, W.W.; Dunlop, M.J. Light-Inducible Recombinases for Bacterial Optogenetics. ACS Synth. Biol. 2020, 9, 227–235. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Liu, D.; Wang, Y.; Lu, M.; Zhang, Q.; Huang, J.; Li, Y.; Ma, T.; Yan, F.; et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 2023, 14, 3297. [Google Scholar] [CrossRef]
- Piraner, D.I.; Abedi, M.H.; Moser, B.A.; Lee-Gosselin, A.; Shapiro, M.G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 2017, 13, 75–80. [Google Scholar] [CrossRef]
- Tschirhart, T.; Kim, E.; McKay, R.; Ueda, H.; Wu, H.-C.; Pottash, A.E.; Zargar, A.; Negrete, A.; Shiloach, J.; Payne, G.F.; et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 2017, 8, 14030. [Google Scholar] [CrossRef]
- Carlsen, R.W.; Edwards, M.R.; Zhuang, J.; Pacoret, C.; Sitti, M. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 2014, 14, 3850–3859. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Ausländer, S.; Spinnler, A.; Ausländer, D.; Sikorski, J.; Folcher, M.; Fussenegger, M. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat. Chem. Biol. 2017, 13, 309–316. [Google Scholar] [CrossRef]
- Li, L.; Zheng, G.; Chen, J.; Ge, M.; Jiang, W.; Lu, Y. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab. Eng. 2017, 40, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Kasari, M.; Kasari, V.; Kärmas, M.; Jõers, A. Decoupling Growth and Production by Removing the Origin of Replication from a Bacterial Chromosome. ACS Synth. Biol. 2022, 11, 2610–2622. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-N.; Ma, B.-G. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range. ACS Synth. Biol. 2023, 12, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Yeung, E.; Farris, Y.; Fansler, S.J.; Bernstein, H.C. A broad-host-range event detector: Expanding and quantifying performance between Escherichia coli and Pseudomonas species. Synth. Biol. 2020, 5, ysaa002. [Google Scholar] [CrossRef]
- Round, J.W.; Robeck, L.D.; Eltis, L.D. An Integrative Toolbox for Synthetic Biology in Rhodococcus. ACS Synth. Biol. 2021, 10, 2383–2395. [Google Scholar] [CrossRef]
- Chao, G.; Travis, C.; Church, G. Measurement of large serine integrase enzymatic characteristics in HEK293 cells reveals variability and influence on downstream reporter expression. FEBS J. 2021, 288, 6410–6427. [Google Scholar] [CrossRef]
- Xu, Z.; Thomas, L.; Davies, B.; Chalmers, R.; Smith, M.; Brown, W. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. 2013, 13, 87. [Google Scholar] [CrossRef]
- Peng, R.; Ba, F.; Li, J.; Cao, J.; Zhang, R.; Liu, W.-Q.; Ren, J.; Liu, Y.; Li, J.; Ling, S. Embedding Living Cells with a Mechanically Reinforced and Functionally Programmable Hydrogel Fiber Platform. Adv. Mater. 2023. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, S.; Liu, Y.; Fang, H.; Song, Y.; Wang, C.; Wei, D.; Feng, J. Systematic Discovery of a New Catalogue of Tyrosine-Type Integrases in Bacterial Genomic Islands. Appl. Environ. Microbiol. 2023, 89, e0173822. [Google Scholar] [CrossRef]
- Jelicic, M.; Schmitt, L.T.; Paszkowski-Rogacz, M.; Walder, A.; Schubert, N.; Hoersten, J.; Sürün, D.; Buchholz, F. Discovery and characterization of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering. Nucleic Acids Res. 2023, 51, 5285–5297. [Google Scholar] [CrossRef]
- Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. In vitro characterization of the site-specific recombination system based on genus Habenivirus phiRSM small serine integrase. Mol. Genet. Genom. 2021, 296, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.; Kim, I.; Nam, J.-A.; Chang, H.-I.; Ha, C.H. In vivo and in vitro characterization of site-specific recombination of a novel serine integrase from the temperate phage EFC-1. Biochem. Biophys. Res. Commun. 2016, 473, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Hosaka, Y.; Yang, Y.-Z.; Nishizawa, T.; Asayama, M.; Takahashi, H.; Shirai, M. In vivo and in vitro characterization of site-specific recombination of actinophage R4 integrase. J. Gen. Appl. Microbiol. 2011, 57, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ou, X.; Zhao, G.; Ding, X. Highly Efficient In Vitro Site-Specific Recombination System Based on Streptomyces Phage phiBT1 Integrase. J. Bacteriol. 2008, 190, 6392–6397. [Google Scholar] [CrossRef]
- Landau, J.; Cuba Samaniego, C.; Giordano, G.; Franco, E. Computational characterization of recombinase circuits for periodic behaviors. iScience 2023, 26, 105624. [Google Scholar] [CrossRef]
- Poole, W.; Pandey, A.; Shur, A.; Tuza, Z.A.; Murray, R.M. BioCRNpyler: Compiling chemical reaction networks from biomolecular parts in diverse contexts. PLoS Comput. Biol. 2022, 18, e1009987. [Google Scholar] [CrossRef]
- Bowyer, J.E.; Ding, C.; Weinberg, B.H.; Wong, W.W.; Bates, D.G. A mechanistic model of the BLADE platform predicts performance characteristics of 256 different synthetic DNA recombination circuits. PLoS Comput. Biol. 2020, 16, e1007849. [Google Scholar] [CrossRef]
- Pokhilko, A.; Zhao, J.; Ebenhöh, O.; Smith, M.C.M.; Stark, W.M.; Colloms, S.D. The mechanism of phiC31 integrase directionality: Experimental analysis and computational modelling. Nucleic Acids Res. 2016, 44, 7360–7372. [Google Scholar]
- Abe, K.; Takahashi, T.; Sato, T. Extreme C-terminal element of SprA serine integrase is a potential component of the “molecular toggle switch” which controls the recombination and its directionality. Mol. Microbiol. 2021, 115, 1110–1121. [Google Scholar] [CrossRef]
- Gaj, T.; Mercer, A.C.; Gersbach, C.A.; Gordley, R.M.; Barbas 3rd, C.F. Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc. Natl. Acad. Sci. USA 2011, 108, 498–503. [Google Scholar] [CrossRef]
- Han, P.; Ma, Y.; Fu, Z.; Guo, Z.; Xie, J.; Wu, Y.; Yuan, Y.-J. A DNA Inversion System in Eukaryotes Established via Laboratory Evolution. ACS Synth. Biol. 2021, 10, 2222–2230. [Google Scholar] [CrossRef] [PubMed]
- Sumikawa, T.; Ohno, S.; Watanabe, T.; Yamamoto, R.; Yamano, M.; Mori, T.; Mori, K.; Tobimatsu, T.; Sera, T. Site-Specific Integration by Recruitment of a Complex of phiC31 Integrase and Donor DNA to a Target Site by Using a Tandem, Artificial Zinc-Finger Protein. Biochemistry 2018, 57, 6868–6877. [Google Scholar] [CrossRef]
- Zhang, Q.; Azarin, S.M.; Sarkar, C.A. Model-guided engineering of DNA sequences with predictable site-specific recombination rates. Nat. Commun. 2022, 13, 4152. [Google Scholar] [CrossRef] [PubMed]
- Jusiak, B.; Jagtap, K.; Gaidukov, L.; Duportet, X.; Bandara, K.; Chu, J.; Zhang, L.; Weiss, R.; Lu, T.K. Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth. Biol. 2019, 8, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Keenholtz, R.A.; Grindley, N.D.F.; Hatfull, G.F.; Marko, J.F. Crossover-site sequence and DNA torsional stress control strand interchanges by the Bxb1 site-specific serine recombinase. Nucleic Acids Res. 2016, 44, 8921–8932. [Google Scholar] [CrossRef]
- Gupta, M.; Till, R.; Smith, M.C.M. Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007, 35, 3407–3419. [Google Scholar] [CrossRef]
- Hoersten, J.; Ruiz-Gómez, G.; Lansing, F.; Rojo-Romanos, T.; Schmitt, L.T.; Sonntag, J.; Pisabarro, M.T.; Buchholz, F. Pairing of single mutations yields obligate Cre-type site-specific recombinases. Nucleic Acids Res. 2022, 50, 1174–1186. [Google Scholar] [CrossRef]
- Singh, S.; Rockenbach, K.; Dedrick, R.M.; VanDemark, A.P.; Hatfull, G.F. Cross-talk between Diverse Serine Integrases. J. Mol. Biol. 2014, 426, 318–331. [Google Scholar] [CrossRef]
- Farruggio, A.P.; Calos, M.P. Serine integrase chimeras with activity in E. coli and HeLa cells. Biol. Open 2014, 3, 895–903. [Google Scholar] [CrossRef]
- Pandey, A.; Rodriguez, M.L.; Poole, W.; Murray, R.M. Characterization of Integrase and Excisionase Activity in a Cell-Free Protein Expression System Using a Modeling and Analysis Pipeline. ACS Synth. Biol. 2023, 12, 511–523. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Chen, L.; Tian, X.; Li, T.; Pu, B.; Ma, C.; Ji, X.; Ba, F.; Xiong, C.; et al. Permeability-Engineered Compartmentalization Enables In Vitro Reconstitution of Sustained Synthetic Biology Systems. Adv. Sci. 2022, 9, 2203652. [Google Scholar] [CrossRef] [PubMed]
- Okauchi, H.; Ichihashi, N. Continuous Cell-Free Replication and Evolution of Artificial Genomic DNA in a Compartmentalized Gene Expression System. ACS Synth. Biol. 2021, 10, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, Y.; Yomo, T.; Ichihashi, N. Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci. Rep. 2018, 8, 13089. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba, F.; Zhang, Y.; Wang, L.; Liu, W.-Q.; Li, J. Applications of Serine Integrases in Synthetic Biology over the Past Decade. SynBio 2023, 1, 172-189. https://doi.org/10.3390/synbio1020012
Ba F, Zhang Y, Wang L, Liu W-Q, Li J. Applications of Serine Integrases in Synthetic Biology over the Past Decade. SynBio. 2023; 1(2):172-189. https://doi.org/10.3390/synbio1020012
Chicago/Turabian StyleBa, Fang, Yufei Zhang, Luyao Wang, Wan-Qiu Liu, and Jian Li. 2023. "Applications of Serine Integrases in Synthetic Biology over the Past Decade" SynBio 1, no. 2: 172-189. https://doi.org/10.3390/synbio1020012
APA StyleBa, F., Zhang, Y., Wang, L., Liu, W. -Q., & Li, J. (2023). Applications of Serine Integrases in Synthetic Biology over the Past Decade. SynBio, 1(2), 172-189. https://doi.org/10.3390/synbio1020012