Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, B.Y.; Hardal, G. Electrical properties of Ni0.5Co0.8Mn1.7O4 and Ni0.5Co1.1Mn1.4O4 negative temperature coefficientceramics doped with B2O3. J. Mater. Sci. Mater. Electron. 2021, 32, 8983–8990. [Google Scholar] [CrossRef]
- Feteira, A. Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Schulze, H.; Li, J.; Dickey, E.C.; Trolier–McKinstry, S. Synthesis, Phase Characterization, and Properties of Chemical Solution–Deposited Nickel Manganite Thermistor Thin Films. J. Am. Ceram. Soc. 2009, 92, 738–744. [Google Scholar] [CrossRef]
- Sachse, H.F. Semiconducting Temperature Sensors and Their Applications; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Metz, R. Electrical properties of N.T.C. thermistors made of manganite ceramics of general spinel structure: Mn3−x−x′ MxNx′O4 (0 ≤ x + x’ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 2000, 35, 4705–4711. [Google Scholar] [CrossRef]
- Luo, W.; Yao, H.M.; Yang, P.H.; Chen, C.S. Negative temperature coefficient material with low thermal constant and high resistivity for low–temperature thermistor applications. J. Am. Ceram. Soc. 2009, 92, 2682–2686. [Google Scholar] [CrossRef]
- Jadhav, R.N.; Mathad, S.N.; Puri, V. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 2012, 38, 5181–5188. [Google Scholar] [CrossRef]
- Vidales, J.L.M.; Garcia-Chain, P.; Rojas, R.M.; Vila, E.; Garcia Martinez, O. Preparation and characterization of spinel type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors. J. Mater. Sci. 1998, 33, 1491–1496. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Y.; Yao, J.; Tang, X.; Wang, J.; Chang, A. NTC thermo–sensitive ceramics with low B value and high resistance at low temperature in Li–doped Mn0.6Ni0.9Co1.5O4 system. J. Mater. Sci. Mater. Electron. 2020, 31, 1403–1410. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.K. Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 2007, 57, 329–332. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Hu, Z.; Yao, J.; Chang, A. Effect of Fe addition on microstructure and electrical properties of Co1.5Mn1.5–xFexO4 (0.2 ≤ x ≤ 1.0) NTC thermistors. J. Mater. Sci. Mater. Electron. 2017, 28, 7243–7247. [Google Scholar] [CrossRef]
- Kocjan, A.; Logar, M.; Shen, Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci. Rep. 2017, 7, 2541. [Google Scholar] [CrossRef]
- Aleksic, O.S.; Nikolic, M.V.; Lukovic, M.D.; Nikolic, N.; Radojcic, B.M.; Radovanovic, M.; Djuric, Z.; Mitric, M.; Nikolic, P.M. Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors. Mater. Sci. Eng. B 2013, 178, 202–210. [Google Scholar] [CrossRef]
- Fang, D.L.; Wang, Z.B.; Yang, P.H.; Liu, W.; Chen, C.S. Preparation of Ultra–Fine Nickel Manganite Powders and Ceramics by a Solid–State Coordination Reaction. J. Am. Ceram. Soc. 2006, 89, 230–235. [Google Scholar] [CrossRef]
- Teichman, C.; Töpfer, J. Sintering and electrical properties of Cu–substituted Zn–Co–Ni–Mn spinel ceramics for NTC thermistors thick films. J. Eur. Ceram. Soc. 2022, 42, 2261–2267. [Google Scholar] [CrossRef]
- Uppuluri, K.; Szwagierczak, D. Fabrication and characterization of screen printed NiMn2O4 spinel based thermistors. Sens. Rev. 2022, 42, 177–186. [Google Scholar] [CrossRef]
- Drouet, C.; Laberty, C.; Fierro, J.L.G.; Alphonse, P.; Rousset, A. X–ray photoelectron spectroscopic study of non–stoichiometric nickel and nickel–copper spinel manganites. Int. J. Inorg. Mater. 2000, 2, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Chanel, C.; Fritsch, S.; Legros, R.; Rousset, A. Controlled Morphology of Nickel Manganite Powders. Key Eng. Mater. 1997, 132, 109–112. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Zhang, H.; Tuokedaerhan, K.; Chang, A. Synthesis of pilot–scale Co2Mn1.5Fe2.1Zn0.4O8 fabricated by hydrothermal method for NTC thermistor. J. Alloys Compd. 2019, 797, 1295–1298. [Google Scholar] [CrossRef]
- Savić, S.M.; Mančić, L.; Vojisavljević, K.; Stojanović, G.; Branković, Z.; Aleksić, O.S.; Branković, G. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation. Mater. Res. Bull. 2011, 46, 1065–1071. [Google Scholar] [CrossRef]
- Zheng, C.H.; Fang, D.L. Preparation of ultra–fine cobalt–nickel manganite powders and ceramics derived from mixed oxalate. Mater. Res. Bull. 2008, 43, 1877–1882. [Google Scholar] [CrossRef]
- Fang, D.L.; Lee, C.G.; Koo, B.H. Preparation of Ultra–Fine FeNiMnO4 Powders and Ceramics by a Solid–State Coordination Reaction. Met. Mater. Int. 2007, 13, 165–170. [Google Scholar] [CrossRef]
- Le, D.T.; Ju, H. Solution Synthesis of Cubic Spinel Mn–Ni–Cu–O Thermistor Powder. Materials 2021, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Mhin, S.; Han, H.; Kim, K.M.; Shim, K.B.; Lee, J.I.; Ryu, J.H. Electrical properties of Fe doped Ni–Mn–Co–O cubic spinel nanopowders for temperature sensors. J. Ceram. Process. Res. 2017, 18, 247–251. [Google Scholar]
- de Gyoryfalva, G.D.C.C.; Reaney, I.M. Decomposition of NiMn2O4 spinels. J. Mater. Res. 2003, 18, 1301–1308. [Google Scholar] [CrossRef]
- Khirade, P.P.; Birajdar, S.D.; Raut, A.; Jadhav, K. Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol–gel auto combustion: Influence of iron on physical properties. Ceram. Int. 2016, 42, 12441–12451. [Google Scholar] [CrossRef]
- Ahsan, M.; Irshad, M.; Fu, P.F.; Siraj, K.; Raza, R.; Javed, F. The effect of calcination temperature on the properties of Ni–SDC cermet anode. Ceram. Int. 2019, 46, 2780–2785. [Google Scholar] [CrossRef]
- Lee, B.W. Preparation and characterization of spinel LiCoxMn2–xO4 by oxalate precipitation. J. Power Sources 2002, 109, 220–226. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M. XPS Studies of Solvated Metal Atom Dispersed (SMAD) Catalysts. Evidence for Layered Cobalt–Manganese Particles on Alumina and Silica. J. Am. Chem. Soc. 1991, 113, 855–861. [Google Scholar] [CrossRef]
- Gao, H.; Ma, C.; Sun, B. Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid–state coordination reaction. J. Mater. Sci. Mater. Electron. 2014, 25, 3990–3995. [Google Scholar] [CrossRef]
- Arinicheva, Y.; Clavier, N.; Neumeier, S.; Podor, R.; Bukaemskiy, A.; Klinkenberg, M.; Roth, G.; Dacheux, N.; Bosbach, D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. J. Eur. Ceram. Soc. 2018, 38, 227–234. [Google Scholar] [CrossRef]
- Hardal, G.; Price, B.Y. Influence of nano–sized cobalt oxide additions on the structural and electrical properties of nickel–manganite–based NTC thermistors. Mater. Technol. 2016, 50, 923–928. [Google Scholar] [CrossRef]
- Park, K.; Kim, S.J.; Kim, J.G.; Nahm, S. Structural and electrical properties of MgO–doped Mn1.4Ni1.2Co0.4−xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 2007, 27, 2009–2016. [Google Scholar] [CrossRef]
- Irshad, M.; Siraj, K.; Raza, R.; Rafique, M.; Usman, U.; Ain, Q.; Ghaffar, A. Evaluation of densification effects on the properties of 8 mol % yttria stabilized zirconia electrolyte synthesized by cost effective coprecipitation route. Ceram. Int. 2021, 47, 2857–2863. [Google Scholar] [CrossRef]
- Rong, J.; Zhang, H.; Zhao, P.; Qin, Q.; He, D.; Xie, J.; Ding, Y.; Jiang, H.; Wu, B.; Chang, A. Effect of Zn/Fe co–doping on the microstructure, electrical properties and aging behavior of Co–Mn–Ni–O NTC ceramics. Appl. Phys. A 2022, 128, 444. [Google Scholar] [CrossRef]
- Price, B.Y.; Hardal, G. Influence of B2O3 addition on the electrical and microstructure properties of Ni0.5Co0.5CuxMn2−xO4 (0 ≤ x ≤ 0.3) NTC thermistors without calcination. J. Mater. Sci. Mater. Electron. 2016, 27, 9226–9232. [Google Scholar] [CrossRef]
- Muralidharan, M.N.; Rohini, P.R.; Sunny, E.K.; Dayas, K.R.; Seema, A. Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceram. Int. 2012, 38, 6481–6486. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, W.; Wu, W.; Zhang, M.; Li, Z. Aging characteristic of Cu-doped nickel manganite NTC ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 11784–11790. [Google Scholar] [CrossRef]
- Fritsch, S.; Sarrias, J.; Brieu, M.; Couderc, J.J.; Baudour, J.L.; Snoeck, E.; Rousset, A. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 1998, 109, 229–237. [Google Scholar] [CrossRef]
- Le, D.T.; Cho, J.H.; Ju, H. Electrical properties and stability of low temperature annealed (Zn,Cu) co–doped (Ni,Mn)3O4 spinel thin films. J. Asian Ceram. Soc. 2021, 9, 838–850. [Google Scholar] [CrossRef]
- Cui, M.-M.; Zhang, X.; Liu, K.-G.; Li, H.-B.; Gao, M.-M.; Liang, S. Fabrication of nano–grained negative temperature coefficient thermistors with high electrical stability. Rare Met. 2021, 40, 1014–1019. [Google Scholar] [CrossRef]
Sample No | Calcining Temperature, °C | Crystallite Size, nm |
---|---|---|
1 | 300 | 6.65 |
2 | 400 | 10.34 |
3 | 550 | 14.56 |
4 | 650 | 19.54 |
Metal Elements | Chemical Composition | ||
---|---|---|---|
Solution | As–Prepared | Calcined at 650 °C | |
Mn | 1.50 | 1.52 | 1.54 |
Ni | 0.60 | 0.57 | 0.59 |
Co | 0.90 | 0.91 | 0.87 |
Sample No | Calcining Temperature, °C | ρ25 (Ω cm) | B25/85 (K) | ΔR/R (%) |
---|---|---|---|---|
1 | 300 | 77,379 ± 248 | – | – |
2 | 400 | 46,316 ± 159 | – | – |
3 | 550 | 9873 ± 72 | – | – |
4 | 650 | 1232 ± 17 | 3676 ± 28 | 1.43 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, D.T.; Cho, J.H. Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders 2023, 2, 47-58. https://doi.org/10.3390/powders2010004
Le DT, Cho JH. Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders. 2023; 2(1):47-58. https://doi.org/10.3390/powders2010004
Chicago/Turabian StyleLe, Duc Thang, and Jeong Ho Cho. 2023. "Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method" Powders 2, no. 1: 47-58. https://doi.org/10.3390/powders2010004
APA StyleLe, D. T., & Cho, J. H. (2023). Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders, 2(1), 47-58. https://doi.org/10.3390/powders2010004