Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, B.Y.; Hardal, G. Electrical properties of Ni0.5Co0.8Mn1.7O4 and Ni0.5Co1.1Mn1.4O4 negative temperature coefficientceramics doped with B2O3. J. Mater. Sci. Mater. Electron. 2021, 32, 8983–8990. [Google Scholar] [CrossRef]
- Feteira, A. Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Schulze, H.; Li, J.; Dickey, E.C.; Trolier–McKinstry, S. Synthesis, Phase Characterization, and Properties of Chemical Solution–Deposited Nickel Manganite Thermistor Thin Films. J. Am. Ceram. Soc. 2009, 92, 738–744. [Google Scholar] [CrossRef]
- Sachse, H.F. Semiconducting Temperature Sensors and Their Applications; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Metz, R. Electrical properties of N.T.C. thermistors made of manganite ceramics of general spinel structure: Mn3−x−x′ MxNx′O4 (0 ≤ x + x’ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 2000, 35, 4705–4711. [Google Scholar] [CrossRef]
- Luo, W.; Yao, H.M.; Yang, P.H.; Chen, C.S. Negative temperature coefficient material with low thermal constant and high resistivity for low–temperature thermistor applications. J. Am. Ceram. Soc. 2009, 92, 2682–2686. [Google Scholar] [CrossRef]
- Jadhav, R.N.; Mathad, S.N.; Puri, V. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 2012, 38, 5181–5188. [Google Scholar] [CrossRef]
- Vidales, J.L.M.; Garcia-Chain, P.; Rojas, R.M.; Vila, E.; Garcia Martinez, O. Preparation and characterization of spinel type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors. J. Mater. Sci. 1998, 33, 1491–1496. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Y.; Yao, J.; Tang, X.; Wang, J.; Chang, A. NTC thermo–sensitive ceramics with low B value and high resistance at low temperature in Li–doped Mn0.6Ni0.9Co1.5O4 system. J. Mater. Sci. Mater. Electron. 2020, 31, 1403–1410. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.K. Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater. 2007, 57, 329–332. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Hu, Z.; Yao, J.; Chang, A. Effect of Fe addition on microstructure and electrical properties of Co1.5Mn1.5–xFexO4 (0.2 ≤ x ≤ 1.0) NTC thermistors. J. Mater. Sci. Mater. Electron. 2017, 28, 7243–7247. [Google Scholar] [CrossRef]
- Kocjan, A.; Logar, M.; Shen, Z. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Sci. Rep. 2017, 7, 2541. [Google Scholar] [CrossRef]
- Aleksic, O.S.; Nikolic, M.V.; Lukovic, M.D.; Nikolic, N.; Radojcic, B.M.; Radovanovic, M.; Djuric, Z.; Mitric, M.; Nikolic, P.M. Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors. Mater. Sci. Eng. B 2013, 178, 202–210. [Google Scholar] [CrossRef]
- Fang, D.L.; Wang, Z.B.; Yang, P.H.; Liu, W.; Chen, C.S. Preparation of Ultra–Fine Nickel Manganite Powders and Ceramics by a Solid–State Coordination Reaction. J. Am. Ceram. Soc. 2006, 89, 230–235. [Google Scholar] [CrossRef]
- Teichman, C.; Töpfer, J. Sintering and electrical properties of Cu–substituted Zn–Co–Ni–Mn spinel ceramics for NTC thermistors thick films. J. Eur. Ceram. Soc. 2022, 42, 2261–2267. [Google Scholar] [CrossRef]
- Uppuluri, K.; Szwagierczak, D. Fabrication and characterization of screen printed NiMn2O4 spinel based thermistors. Sens. Rev. 2022, 42, 177–186. [Google Scholar] [CrossRef]
- Drouet, C.; Laberty, C.; Fierro, J.L.G.; Alphonse, P.; Rousset, A. X–ray photoelectron spectroscopic study of non–stoichiometric nickel and nickel–copper spinel manganites. Int. J. Inorg. Mater. 2000, 2, 419–426. [Google Scholar] [CrossRef]
- Chanel, C.; Fritsch, S.; Legros, R.; Rousset, A. Controlled Morphology of Nickel Manganite Powders. Key Eng. Mater. 1997, 132, 109–112. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Zhang, H.; Tuokedaerhan, K.; Chang, A. Synthesis of pilot–scale Co2Mn1.5Fe2.1Zn0.4O8 fabricated by hydrothermal method for NTC thermistor. J. Alloys Compd. 2019, 797, 1295–1298. [Google Scholar] [CrossRef]
- Savić, S.M.; Mančić, L.; Vojisavljević, K.; Stojanović, G.; Branković, Z.; Aleksić, O.S.; Branković, G. Microstructural and electrical changes in nickel manganite powder induced by mechanical activation. Mater. Res. Bull. 2011, 46, 1065–1071. [Google Scholar] [CrossRef]
- Zheng, C.H.; Fang, D.L. Preparation of ultra–fine cobalt–nickel manganite powders and ceramics derived from mixed oxalate. Mater. Res. Bull. 2008, 43, 1877–1882. [Google Scholar] [CrossRef]
- Fang, D.L.; Lee, C.G.; Koo, B.H. Preparation of Ultra–Fine FeNiMnO4 Powders and Ceramics by a Solid–State Coordination Reaction. Met. Mater. Int. 2007, 13, 165–170. [Google Scholar] [CrossRef]
- Le, D.T.; Ju, H. Solution Synthesis of Cubic Spinel Mn–Ni–Cu–O Thermistor Powder. Materials 2021, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Mhin, S.; Han, H.; Kim, K.M.; Shim, K.B.; Lee, J.I.; Ryu, J.H. Electrical properties of Fe doped Ni–Mn–Co–O cubic spinel nanopowders for temperature sensors. J. Ceram. Process. Res. 2017, 18, 247–251. [Google Scholar]
- de Gyoryfalva, G.D.C.C.; Reaney, I.M. Decomposition of NiMn2O4 spinels. J. Mater. Res. 2003, 18, 1301–1308. [Google Scholar] [CrossRef]
- Khirade, P.P.; Birajdar, S.D.; Raut, A.; Jadhav, K. Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol–gel auto combustion: Influence of iron on physical properties. Ceram. Int. 2016, 42, 12441–12451. [Google Scholar] [CrossRef]
- Ahsan, M.; Irshad, M.; Fu, P.F.; Siraj, K.; Raza, R.; Javed, F. The effect of calcination temperature on the properties of Ni–SDC cermet anode. Ceram. Int. 2019, 46, 2780–2785. [Google Scholar] [CrossRef]
- Lee, B.W. Preparation and characterization of spinel LiCoxMn2–xO4 by oxalate precipitation. J. Power Sources 2002, 109, 220–226. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M. XPS Studies of Solvated Metal Atom Dispersed (SMAD) Catalysts. Evidence for Layered Cobalt–Manganese Particles on Alumina and Silica. J. Am. Chem. Soc. 1991, 113, 855–861. [Google Scholar] [CrossRef]
- Gao, H.; Ma, C.; Sun, B. Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid–state coordination reaction. J. Mater. Sci. Mater. Electron. 2014, 25, 3990–3995. [Google Scholar] [CrossRef]
- Arinicheva, Y.; Clavier, N.; Neumeier, S.; Podor, R.; Bukaemskiy, A.; Klinkenberg, M.; Roth, G.; Dacheux, N.; Bosbach, D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. J. Eur. Ceram. Soc. 2018, 38, 227–234. [Google Scholar] [CrossRef]
- Hardal, G.; Price, B.Y. Influence of nano–sized cobalt oxide additions on the structural and electrical properties of nickel–manganite–based NTC thermistors. Mater. Technol. 2016, 50, 923–928. [Google Scholar] [CrossRef]
- Park, K.; Kim, S.J.; Kim, J.G.; Nahm, S. Structural and electrical properties of MgO–doped Mn1.4Ni1.2Co0.4−xMgxO4 (0 ≤ x ≤ 0.25) NTC thermistors. J. Eur. Ceram. Soc. 2007, 27, 2009–2016. [Google Scholar] [CrossRef]
- Irshad, M.; Siraj, K.; Raza, R.; Rafique, M.; Usman, U.; Ain, Q.; Ghaffar, A. Evaluation of densification effects on the properties of 8 mol % yttria stabilized zirconia electrolyte synthesized by cost effective coprecipitation route. Ceram. Int. 2021, 47, 2857–2863. [Google Scholar] [CrossRef]
- Rong, J.; Zhang, H.; Zhao, P.; Qin, Q.; He, D.; Xie, J.; Ding, Y.; Jiang, H.; Wu, B.; Chang, A. Effect of Zn/Fe co–doping on the microstructure, electrical properties and aging behavior of Co–Mn–Ni–O NTC ceramics. Appl. Phys. A 2022, 128, 444. [Google Scholar] [CrossRef]
- Price, B.Y.; Hardal, G. Influence of B2O3 addition on the electrical and microstructure properties of Ni0.5Co0.5CuxMn2−xO4 (0 ≤ x ≤ 0.3) NTC thermistors without calcination. J. Mater. Sci. Mater. Electron. 2016, 27, 9226–9232. [Google Scholar] [CrossRef]
- Muralidharan, M.N.; Rohini, P.R.; Sunny, E.K.; Dayas, K.R.; Seema, A. Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceram. Int. 2012, 38, 6481–6486. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, W.; Wu, W.; Zhang, M.; Li, Z. Aging characteristic of Cu-doped nickel manganite NTC ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 11784–11790. [Google Scholar] [CrossRef]
- Fritsch, S.; Sarrias, J.; Brieu, M.; Couderc, J.J.; Baudour, J.L.; Snoeck, E.; Rousset, A. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion. 1998, 109, 229–237. [Google Scholar] [CrossRef]
- Le, D.T.; Cho, J.H.; Ju, H. Electrical properties and stability of low temperature annealed (Zn,Cu) co–doped (Ni,Mn)3O4 spinel thin films. J. Asian Ceram. Soc. 2021, 9, 838–850. [Google Scholar] [CrossRef]
- Cui, M.-M.; Zhang, X.; Liu, K.-G.; Li, H.-B.; Gao, M.-M.; Liang, S. Fabrication of nano–grained negative temperature coefficient thermistors with high electrical stability. Rare Met. 2021, 40, 1014–1019. [Google Scholar] [CrossRef]
Sample No | Calcining Temperature, °C | Crystallite Size, nm |
---|---|---|
1 | 300 | 6.65 |
2 | 400 | 10.34 |
3 | 550 | 14.56 |
4 | 650 | 19.54 |
Metal Elements | Chemical Composition | ||
---|---|---|---|
Solution | As–Prepared | Calcined at 650 °C | |
Mn | 1.50 | 1.52 | 1.54 |
Ni | 0.60 | 0.57 | 0.59 |
Co | 0.90 | 0.91 | 0.87 |
Sample No | Calcining Temperature, °C | ρ25 (Ω cm) | B25/85 (K) | ΔR/R (%) |
---|---|---|---|---|
1 | 300 | 77,379 ± 248 | – | – |
2 | 400 | 46,316 ± 159 | – | – |
3 | 550 | 9873 ± 72 | – | – |
4 | 650 | 1232 ± 17 | 3676 ± 28 | 1.43 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, D.T.; Cho, J.H. Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders 2023, 2, 47-58. https://doi.org/10.3390/powders2010004
Le DT, Cho JH. Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders. 2023; 2(1):47-58. https://doi.org/10.3390/powders2010004
Chicago/Turabian StyleLe, Duc Thang, and Jeong Ho Cho. 2023. "Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method" Powders 2, no. 1: 47-58. https://doi.org/10.3390/powders2010004
APA StyleLe, D. T., & Cho, J. H. (2023). Nano–Crystalline Mn–Ni–Co–O Thermistor Powder Prepared by Co–Precipitation Method. Powders, 2(1), 47-58. https://doi.org/10.3390/powders2010004