No City Left Behind: Building Climate Policy Bridges between the North and South
Abstract
:1. Introduction
- (1)
- The mere presence of shared socioeconomic profiles among certain cities (peer cities) does not adequately account for the presence or absence of effective climate policies. Socioeconomic profiles significantly influence policy-making processes and priorities within cities. Cities with similar socioeconomic attributes often encounter comparable challenges and limitations in implementing climate policies, such as financial constraints, resource availability, technological capacities, and political dynamics. Analyzing cities with shared socioeconomic profiles sheds light on how these commonalities affect climate policy formulation and implementation. This examination reveals patterns, trends, and potential obstacles stemming from socioeconomic factors. However, it is crucial to recognize that socioeconomic profiles alone do not fully explain effective climate policies. Political engagement, public awareness, stakeholder involvement, institutional capacity, and external pressures also hold vital roles. The study acknowledges the limitations of solely focusing on socioeconomic profiles and underscores the necessity for a comprehensive analysis incorporating multiple factors to grasp the complexity of climate policy effectiveness.
- (2)
- While having climate policies in place is crucial, the actual implementation of these policies holds even greater importance. The transfer of implementation strategies and best practices is essential, possibly surpassing the significance of policy transfer itself. Understanding how to execute climate policies effectively demands careful consideration of local contexts, institutional capabilities, political dynamics, public involvement, and other region-specific factors. Thus, a comprehensive approach extending beyond policy formulation becomes imperative. This approach should encompass tactics for enhancing capacity, involving stakeholders, establishing monitoring and evaluation mechanisms, and overcoming implementation barriers. It underscores that achieving favorable outcomes from climate policies hinges not solely on their existence but equally on the successful translation of those policies into concrete actions and measurable results.
2. Method and Materials
2.1. Data Collection and Pre-Processing
2.1.1. Data Collection for Virtual Carbon Emissions
2.1.2. Data Collection for Urban Climate Policy
2.2. Method
3. Results and Discussion
3.1. Urban Climate Clusters: Identifying Peer Cities
3.2. Urban Climate Policies: Building Policy Bridges between Peer Cities
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
City Size | Region | Count | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|---|
Large | Africa | 46 | 1.668201 | 1.773951 | 0.001095 | 0.583514 | 1.580737 | 2.352944 | 9.5 |
Large | Asia-Pacific | 407 | 7.926575 | 3.313403 | 0.009521 | 7 | 8.695 | 9.055265 | 28 |
Large | Central America/Caribbean | 8 | 2.444509 | 0.980879 | 1.543836 | 1.568354 | 2.065784 | 3.522313 | 3.65151 |
Large | EU-28 | 25 | 8.689808 | 1.75331 | 5.2 | 7.5 | 8.400077 | 10.29404 | 11.1 |
Large | Latin America | 32 | 3.334497 | 1.092284 | 1.720759 | 2.55 | 3.172987 | 4.128888 | 6.2 |
Large | Middle East/Central Asia | 42 | 8.926649 | 5.937517 | 0.502316 | 5.405981 | 6.857893 | 9.75 | 28.7 |
Large | North America | 64 | 15.71238 | 6.107379 | 3.4 | 14.425 | 17.15 | 19.575 | 26.1 |
Large | Other Europe | 19 | 10.11289 | 3.415572 | 3.7 | 7.067263 | 11.95385 | 12.4 | 13.8 |
Meduim | Africa | 97 | 2.349386 | 1.973972 | 0.025191 | 1.048464 | 2.191583 | 2.40724 | 8.4 |
Meduim | Asia-Pacific | 530 | 7.25611 | 3.506502 | 0.410283 | 2.853281 | 8.867161 | 8.913171 | 22.6 |
Meduim | Central America/Caribbean | 12 | 2.052178 | 1.508632 | 0.12549 | 0.22392 | 2.428018 | 3.30226 | 4.024683 |
Meduim | EU-28 | 93 | 8.574385 | 1.622799 | 4.5 | 7.481882 | 8.198716 | 10.15877 | 12.6 |
Meduim | Latin America | 96 | 3.799532 | 0.815481 | 1.687338 | 2.965204 | 3.965869 | 3.994822 | 6.376739 |
Meduim | Middle East/Central Asia | 86 | 7.728069 | 5.280795 | 0.69475 | 4.545738 | 6.640534 | 9.225 | 32.9 |
Meduim | North America | 169 | 13.76305 | 6.339965 | 4.781958 | 4.868961 | 17.1 | 18.53311 | 22.8 |
Meduim | Other Europe | 73 | 10.16617 | 3.198667 | 3.208334 | 7.097868 | 11.76007 | 11.9 | 17.5 |
Mega | Africa | 2 | 0.959754 | 0.65019 | 0.5 | 0.729877 | 0.959754 | 1.189631 | 1.419508 |
Mega | Asia-Pacific | 24 | 4.54512 | 3.335839 | 0.7 | 1.65 | 4 | 7.4 | 13 |
Mega | EU-28 | 2 | 7.474869 | 0.318383 | 7.249739 | 7.362304 | 7.474869 | 7.587435 | 7.7 |
Mega | Latin America | 3 | 2.533333 | 1.357694 | 1.7 | 1.75 | 1.8 | 2.95 | 4.1 |
Mega | Middle East/Central Asia | 2 | 6.7 | 2.12132 | 5.2 | 5.95 | 6.7 | 7.45 | 8.2 |
Mega | North America | 3 | 11.5 | 7.637408 | 2.8 | 8.7 | 14.6 | 15.85 | 17.1 |
Mega | Other Europe | 1 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | |
Small | Africa | 1068 | 2.054795 | 2.148901 | 0.004519 | 0.661388 | 1.342449 | 2.189386 | 9.2 |
Small | Asia-Pacific | 2249 | 8.460339 | 5.061953 | 0.233646 | 2.616635 | 11.15341 | 11.1806 | 18.8 |
Small | Central America/Caribbean | 251 | 2.571873 | 1.204404 | 0.014604 | 2.143705 | 3.056284 | 3.301914 | 12.47965 |
Small | EU-28 | 5717 | 8.56441 | 1.598455 | 3.701598 | 7.880875 | 8.039162 | 10.42784 | 20.54022 |
Small | Latin America | 1419 | 3.778722 | 1.201423 | 1.409341 | 3.722414 | 3.757367 | 4.592188 | 6.139928 |
Small | Middle East/Central Asia | 827 | 6.902887 | 3.801626 | 0.442721 | 3.982963 | 6.39759 | 9.509682 | 18.76555 |
Small | North America | 8908 | 17.04467 | 3.672694 | 4.593807 | 18.29807 | 18.3032 | 18.30436 | 24.7 |
Small | Other Europe | 1835 | 9.623677 | 2.92851 | 2.962979 | 6.854226 | 11.55867 | 11.56482 | 13.00869 |
Continent | Policy Objective | Count |
---|---|---|
Africa | Adaptation | 143 |
Africa | Air pollution | 3 |
Africa | Economic development | 14 |
Africa | Energy access | 17 |
Africa | Energy security | 8 |
Africa | Food security | 2 |
Africa | Land use | 12 |
Africa | Mitigation | 450 |
Africa | Water | 4 |
Asia | Adaptation | 133 |
Asia | Air pollution | 61 |
Asia | Economic development | 56 |
Asia | Energy access | 33 |
Asia | Energy security | 37 |
Asia | Food security | 7 |
Asia | Land use | 33 |
Asia | Mitigation | 1456 |
Asia | Water | 19 |
Europe | Adaptation | 56 |
Europe | Air pollution | 23 |
Europe | Economic development | 14 |
Europe | Energy access | 19 |
Europe | Energy security | 22 |
Europe | Food security | 1 |
Europe | Land use | 10 |
Europe | Mitigation | 1613 |
Europe | Water | 1 |
North America | Adaptation | 68 |
North America | Air pollution | 34 |
North America | Economic development | 13 |
North America | Energy access | 12 |
North America | Energy security | 31 |
North America | Food security | 1 |
North America | Land use | 10 |
North America | Mitigation | 939 |
North America | Water | 4 |
Oceania | Adaptation | 29 |
Oceania | Air pollution | 13 |
Oceania | Economic development | 10 |
Oceania | Energy access | 7 |
Oceania | Energy security | 6 |
Oceania | Food security | 4 |
Oceania | Land use | 4 |
Oceania | Mitigation | 300 |
Oceania | Water | 2 |
South America | Adaptation | 50 |
South America | Air pollution | 14 |
South America | Economic development | 20 |
South America | Energy access | 12 |
South America | Energy security | 6 |
South America | Food security | 1 |
South America | Land use | 24 |
South America | Mitigation | 398 |
Cluster | Africa | Asia-Pacific | Central America/Caribbean | EU-28 | Latin America | Middle East/ Central Asia | North America | Other Europe |
---|---|---|---|---|---|---|---|---|
Cluster 0 | 0 | 40.3 | 0 | 1.5 | 0 | 4.9 | 0.4 | 52.9 |
Cluster 1 | 7 | 12.2 | 7 | 0.6 | 63.5 | 9.3 | 0.2 | 0.2 |
Cluster 2 | 0 | 0.1 | 0 | 0.1 | 0 | 0.2 | 99.6 | 0 |
Cluster 3 | 3.4 | 20 | 0 | 76.1 | 0 | 0.4 | 0 | 0.1 |
Cluster 4 | 0 | 2.3 | 0.1 | 59.5 | 6.7 | 22.7 | 0 | 8.7 |
Cluster 5 | 62.4 | 14.4 | 5.8 | 0 | 12.7 | 4.7 | 0 | 0 |
Cluster 6 | 0 | 32.8 | 0 | 0 | 0 | 4.3 | 62.5 | 0.4 |
Cluster 7 | 0 | 0.4 | 0 | 87.9 | 0 | 4.1 | 0.2 | 7.4 |
Cluster 8 | 17.1 | 46.8 | 8.5 | 0 | 17.1 | 6.7 | 0.1 | 3.7 |
Cluster 9 | 0 | 9.3 | 0 | 0 | 0 | 9.3 | 81.4 | 0 |
Cluster 10 | 1.1 | 13.3 | 0 | 12.5 | 13.7 | 2.2 | 38.6 | 18.7 |
References
- Pengue, W.; Blanco, G.; Conninck, H.; Diaz Anadon, L.; Lim, Y.; Sagar, A.; Verdolini, E.; Witajewski, J.; Tanaka, K.; Diagne, E.; et al. Climate Change 2022: Mitigation of Climate Change. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ (accessed on 19 April 2023).
- Cheng, L.; Mi, Z.; Sudmant, A.; Coffman, D. Bigger Cities Better Climate? Results from an Analysis of Urban Areas in China. Energy Econ. 2022, 107, 105872. [Google Scholar] [CrossRef]
- Hachaichi, M. Reshaping Modern Urban Models with the Global Environmental Ceiling: What, When, How, and Why? 2022. Available online: https://www.researchgate.net/publication/359134024_Reshaping_modern_urban_models_with_the_global_environmental_ceiling_What_when_how_and_why (accessed on 19 April 2023).
- Lakanen, L.; Kumpulainen, H.; Helppi, O.; Grönman, K.; Soukka, R. Carbon Handprint Approach for Cities and Regions: A Framework to Reveal and Assess the Potential of Cities in Climate Change Mitigation. Sustainability 2022, 14, 6534. [Google Scholar] [CrossRef]
- Bai, X.; Baynes, T.M.; Webb, R.; Ryan, C.; Smith, M.H. Cities. In Transitioning to a Prosperous, Resilient and Carbon-Free Economy: A Guide for Decision-Makers; Hussey, K., Baldwin, K.G.H., Howden, M., Smith, M.H., Dawson, P.J., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 271–300. ISBN 978-1-107-11834-8. [Google Scholar]
- Fischedick, M.; Byrne, J.; Hermwille, L.; Taminiau, J.; Luhmann, H.-J.; Stelzer, F.; Vallentin, D. Reflections on the State of Climage Change Policy: From COP21 to Cities; MIT Press: Cambridge, MA, USA, 2018; pp. 183–203. [Google Scholar]
- Kalmykova, Y.; Rosado, L.; Patrício, J. Urban Economies Resource Productivity and Decoupling: Metabolism Trends of 1996–2011 in Sweden, Stockholm, and Gothenburg. Environ. Sci. Technol. 2015, 49, 8815–8823. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Brown, M.A. Twelve Metropolitan Carbon Footprints: A Preliminary Comparative Global Assessment. Energy Policy 2010, 38, 4856–4869. [Google Scholar] [CrossRef]
- Hachaichi, M.; Baouni, T. Downscaling the Planetary Boundaries (Pbs) Framework to City Scale-Level: De-Risking MENA Region’s Environment Future. Environ. Sustain. Indic. 2020, 5, 100023. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the Urban Carbon Footprint: An Overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Hachaichi, M.; Baouni, T. Virtual Carbon Emissions in the Big Cities of Middle-Income Countries. Urban Clim. 2021, 40, 100986. [Google Scholar] [CrossRef]
- Lamb, W.F.; Creutzig, F.; Callaghan, M.W.; Minx, J.C. Learning about Urban Climate Solutions from Case Studies. Nat. Clim. Chang. 2019, 9, 279–287. [Google Scholar] [CrossRef]
- Cobbinah, P.B. Urban Resilience in Climate Change Hotspot. Land Use Policy 2021, 100, 104948. [Google Scholar] [CrossRef]
- George, T.; Longworth, S.; O’Dell, M. Introducing, Understanding, and Using the ICI 300 Peer Cities Identification Tool. Population 2016, 199, 128-009. [Google Scholar]
- Larsen, B.; Hall, M.; McGinnis-Brown, L.; Moss, M.; Fry, V.C. City of Boise Peer Cities Selection 2020. 2020. Available online: https://www.boisestate.edu/sps-ipi/our-research/city-of-boise-peer-cities-selection-2020/ (accessed on 19 April 2023).
- Schaller, B. A Regression Model of the Number of Taxicabs in U.S. Cities. J. Public Transp. 2005, 8, 63–78. [Google Scholar] [CrossRef]
- Palmiotto, M.J.; Janeksela, G.M. A Comparative Study of Index Crimes in Five Peer Cities. J. Crime Justice 2000, 23, 111–123. [Google Scholar] [CrossRef]
- Powell, A. Coding Alternative Modes of Governance: Learning from Experimental ‘peer-to-Peer Cities’. In Code and the City; Routledge: Abingdon, UK, 2016; ISBN 978-1-315-68599-1. [Google Scholar]
- Hachaichi, M.; Egieya, J. Water-Food-Energy Nexus in Global Cities: Addressing Complex Urban Interdependencies. Water Resour. Manag. 2023, 37, 1811–1825. [Google Scholar] [CrossRef]
- Wang, S.; Bai, X. Compatibility in Cross-City Innovation Transfer: Importance of Existing Local Experiments. Environ. Innov. Soc. Transit. 2022, 45, 52–71. [Google Scholar] [CrossRef]
- Callaghan, M.; Vasudevan, S.; Banisch, L.; Döbbeling, N.; Edmondson, D.; Flachsland, C.; Lamb, W.; Levi, S.; Müller-Hansen, F.; Posada, E.; et al. What Is the Evidence on Climate Mitigation Policies, and to What Extent Can It Be Identified and Classified Using Machine Learning? A Machine-Learning-Assisted Systematic Map Protocol. 2022. Available online: https://assets.researchsquare.com/files/pex-1910/v1/469059ba-3218-4fb6-9993-6568bf09a98f.pdf?c=1661517519 (accessed on 19 April 2023).
- Peñasco, C.; Anadón, L.D.; Verdolini, E. Systematic Review of the Outcomes and Trade-Offs of Ten Types of Decarbonization Policy Instruments. Nat. Clim. Chang. 2021, 11, 257–265. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; Elzen, M.d.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J.; et al. A Review of Successful Climate Change Mitigation Policies in Major Emitting Economies and the Potential of Global Replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Walsh, B.; Greenwalt, J.; Craig, M.; Okem, A. Findings from Innovate4cities 2021 and Update to the Global Researc H and Action Agenda; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Global Covenant of Mayors Global Covenant of Mayors for Cliamte and Energy. Available online: https://www.globalcovenantofmayors.org/ (accessed on 3 December 2022).
- Carbon Neutral Cities Alliance Urban Sustainability Directors Network. Available online: https://www.usdn.org/cnca.html (accessed on 3 December 2022).
- Steynor, A.; Leighton, M.; Kavonic, J.; Abrahams, W.; Magole, L.; Kaunda, S.; Mubaya, C.P. Learning from Climate Change Perceptions in Southern African Cities. Clim. Risk Manag. 2020, 27, 100202. [Google Scholar] [CrossRef]
- Webber, S.; Donner, S.D. Climate Service Warnings: Cautions about Commercializing Climate Science for Adaptation in the Developing World. WIREs Clim. Chang. 2017, 8, e424. [Google Scholar] [CrossRef]
- Castán Broto, V.; Bulkeley, H. A Survey of Urban Climate Change Experiments in 100 Cities. Glob. Environ. Chang. 2013, 23, 92–102. [Google Scholar] [CrossRef]
- Hachaichi, M. Cities: Allocating Climate Change Responsibilities at Planetary Scale. Urban Clim. 2022, 46, 101329. [Google Scholar] [CrossRef]
- Lwasa, S.; Seto, K.C.; Bai, X.; Blanco, H.; Gurney, K.R.; Kilkiş, S.; Lucon, O.; Murakami, J.; Pan, J.; Sharifi, A. Urban Systems and Other Settlements. IPCC 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter08_SM.pdf (accessed on 19 April 2023).
- UNFCCC INDCs. Available online: https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx (accessed on 27 November 2022).
- Climate Policy Database Policies|Climate Policy Database. Available online: https://climatepolicydatabase.org/policies (accessed on 27 November 2022).
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM SIGMOD Rec. 1996, 25, 103–114. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the KDD-96: The Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Lang, A.; Schubert, E. BETULA: Numerically Stable CF-Trees for BIRCH Clustering. In Proceedings of the SISAP 2020: Similarity Search and Applications, Virtual, 30 September–2 October 2020; Satoh, S., Vadicamo, L., Zimek, A., Carrara, F., Bartolini, I., Aumüller, M., Jónsson, B.Þ., Pagh, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 281–296. [Google Scholar]
- Hughes, S. A Meta-Analysis of Urban Climate Change Adaptation Planning in the U.S. Urban Clim. 2015, 14, 17–29. [Google Scholar] [CrossRef]
- Kernaghan, S.; da Silva, J. Initiating and Sustaining Action: Experiences Building Resilience to Climate Change in Asian Cities. Urban Clim. 2014, 7, 47–63. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Marino, A.; Nardini, S. Understanding Energy Consumption and Carbon Emissions in Europe: A Focus on Inequality Issues. Energy 2019, 170, 120–130. [Google Scholar] [CrossRef]
- El-Islem, H.M.N.; Tahar, B. The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria. Int. J. Energy Environ. Eng. 2019, 13, 255–262. [Google Scholar]
- Kanemoto, K.; Moran, D.; Hertwich, E.G. Mapping the Carbon Footprint of Nations. Environ. Sci. Technol. 2016, 50, 10512–10517. [Google Scholar] [CrossRef]
- Nathaniel, S.; Anyanwu, O.; Shah, M. Renewable Energy, Urbanization, and Ecological Footprint in the Middle East and North Africa Region. Environ. Sci. Pollut. Res. 2020, 27, 14601–14613. [Google Scholar] [CrossRef]
- Hagerman, S.M.; Pelai, R. Responding to Climate Change in Forest Management: Two Decades of Recommendations. Front. Ecol. Environ. 2018, 16, 579–587. [Google Scholar] [CrossRef]
- Abeldaño Zuñiga, R.A.; Lima, G.N.; González Villoria, A.M. Impact of Slow-Onset Events Related to Climate Change on Food Security in Latin America and the Caribbean. Curr. Opin. Environ. Sustain. 2021, 50, 215–224. [Google Scholar] [CrossRef]
- Lincoln Lenderking, H.; Robinson, S.; Carlson, G. Climate Change and Food Security in Caribbean Small Island Developing States: Challenges and Strategies. Int. J. Sustain. Dev. World Ecol. 2021, 28, 238–245. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal Adaptation to Climate Change and Sea-Level Rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Nagy, G.J.; Gutiérrez, O.; Brugnoli, E.; Verocai, J.E.; Gómez-Erache, M.; Villamizar, A.; Olivares, I.; Azeiteiro, U.M.; Leal Filho, W.; Amaro, N. Climate Vulnerability, Impacts and Adaptation in Central and South America Coastal Areas. Reg. Stud. Mar. Sci. 2019, 29, 100683. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Koehn, J.Z.; Holsman, K.K.; Halpern, B.S. Emerging Trends in Science and News of Climate Change Threats to and Adaptation of Aquaculture. Aquaculture 2022, 549, 737812. [Google Scholar] [CrossRef]
- Burls, N.J.; Blamey, R.C.; Cash, B.A.; Swenson, E.T.; Fahad, A.a.; Bopape, M.-J.M.; Straus, D.M.; Reason, C.J.C. The Cape Town “Day Zero” Drought and Hadley Cell Expansion. NPJ Clim. Atmos. Sci. 2019, 2, 27. [Google Scholar] [CrossRef]
- Muller, M. Cape Town’s Drought: Don’t Blame Climate Change. Nature 2018, 559, 174–176. [Google Scholar] [CrossRef]
- Wu, S.; Sumari, N.S.; Dong, T.; Xu, G.; Liu, Y. Characterizing Urban Expansion Combining Concentric-Ring and Grid-Based Analysis for Latin American Cities. Land 2021, 10, 444. [Google Scholar] [CrossRef]
- Duque, J.C.; Lozano-Gracia, N.; Patino, J.E.; Restrepo, P. Urban Form and Productivity: What Shapes Are Latin-American Cities? Environ. Plan. B Urban Anal. City Sci. 2022, 49, 131–150. [Google Scholar] [CrossRef]
- Lane, H.M.; Morello-Frosch, R.; Marshall, J.D.; Apte, J.S. Historical Redlining Is Associated with Present-Day Air Pollution Disparities in U.S. Cities. Environ. Sci. Technol. Lett. 2022, 9, 345–350. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cunha, C.D. The Role of Non-Climate Data in Effective Climate Adaptation Planning: Lessons From Small French and American Cities. Sustainability 2023, 15, 1556. [Google Scholar] [CrossRef]
Cluster | City Share | Carbon (t CO2 per Capita/Year) |
---|---|---|
Cluster 9 | 0.2% | 23.4 ± 2.5 |
Cluster 2 | 31.9% | 18.3 ± 0.2 |
Cluster 6 | 4.5% | 15.6 ± 0.7 |
Cluster 0 | 9.4% | 11.6 ± 0.4 |
Cluster 7 | 9.3% | 10.4 ± 0.2 |
Cluster 3 | 14.1% | 8.2 ± 0.4 |
Cluster 4 | 6.9% | 6.7 ± 0.3 |
Cluster 10 | 8% | 4.9 ± 0.3 |
Cluster 1 | 5.2% | 3.7 ± 0.2 |
Cluster 8 | 5.4% | 2.5 ± 0.3 |
Cluster 5 | 5.1% | 1.0 ± 0.5 |
Peer-Cities Clusters | City Size | Share (%) | Mean (t CO2) | Std (t CO2) |
---|---|---|---|---|
Cross-mutual Learning | Large cities | 14.88 | 6.79 | 3.55 |
Medium cities | 18.28 | 5.45 | 3.31 | |
Mega cities | 1.15 | 4.85 | 3.80 | |
Small cities | 65.67 | 2.23 | 2.02 | |
Inner-mutual Learning | Large cities | 0.95 | 7.56 | 3.636 |
Medium cities | 3.91 | 7.80 | 3.35 | |
Small cities | 95.130 | 7.86 | 2.79 | |
Outer-mutual Learning | Large cities | 0.84 | 16.94 | 4.56 |
Medium cities | 1.39 | 18.14 | 2.58 | |
Mega cities | 0.022 | 9.20 | 7.63 | |
Small cities | 97.73 | 17.98 | 0.96 |
Air Pollution | Economic Development | Energy Access | Energy Security | Food Security | Land Use | Water | |
---|---|---|---|---|---|---|---|
Africa | 10.5% | 29.9% | 23.4% | 10.3% | 1.4% | 14.9% | 9.6% |
Asia | 31% | 18.9% | 7.9% | 16.8% | 3.5% | 15.3% | 6.7% |
Europe | 26.2% | 18.1% | 19.1% | 20% | 2.8% | 13.6% | 0.2% |
North America | 37.1% | 11.9% | 8% | 32.3% | 1.8% | 8.9% | 0.1% |
Oceania | 31.1% | 20.4% | 15.3% | 12.8% | 7.6% | 7.6% | 5.1% |
South America | 25.6% | 32% | 7.5% | 3.6% | 2.7% | 28.6% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachaichi, M. No City Left Behind: Building Climate Policy Bridges between the North and South. Meteorology 2023, 2, 403-420. https://doi.org/10.3390/meteorology2030024
Hachaichi M. No City Left Behind: Building Climate Policy Bridges between the North and South. Meteorology. 2023; 2(3):403-420. https://doi.org/10.3390/meteorology2030024
Chicago/Turabian StyleHachaichi, Mohamed. 2023. "No City Left Behind: Building Climate Policy Bridges between the North and South" Meteorology 2, no. 3: 403-420. https://doi.org/10.3390/meteorology2030024
APA StyleHachaichi, M. (2023). No City Left Behind: Building Climate Policy Bridges between the North and South. Meteorology, 2(3), 403-420. https://doi.org/10.3390/meteorology2030024