Airstream Association of Large Boundary Layer Rolls during Extratropical Transition of Post-Tropical Cyclone Sandy (2012)
Abstract
:1. Introduction
2. Data and Methods
2.1. Observations
2.2. Archived Weather Research and Forecasting (WRF) Simulation
3. Results
3.1. WRF Profiles Verification
3.2. Roll Presence Metric
3.3. Association of Rolls with Extratropical Airstream Sectors
3.4. Boundary Layer Characterization and Evolution
4. Discussion
4.1. Roll Location in Other Tropical Cyclones
4.2. Parameters Driving Roll Growth and Size
4.3. Hypothesis for Roll Location
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wurman, J.; Winslow, J. Intense Sub-Kilometer-Scale Boundary Layer Rolls Observed in Hurricane Fran. Science 1998, 280, 555–557. [Google Scholar] [CrossRef]
- Gall, R.; Tuttle, J.; Hildebrand, P. Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Weather Rev. 1998, 126, 1749–1766. [Google Scholar] [CrossRef]
- Ellis, R.; Businger, S. Helical circulations in the typhoon boundary layer. J. Geophys. Res. Atmos. 2010, 115, D06205. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, C.H.; McNab, W.H. Forest disturbance in hurricane-related downbursts in the Appalachian mountains of North Carolina. For. Ecol. Manag. 1998, 104, 179–191. [Google Scholar] [CrossRef]
- Kuettner, J. The Band Structure of the Atmosphere. Tellus 1959, 11, 267–294. [Google Scholar] [CrossRef]
- Walter, B.A.; Overland, J.E. Observations of Longitudinal Rolls in a Near Neutral Atmosphere. Mon. Weather Rev. 1984, 112, 200–208. [Google Scholar] [CrossRef]
- Kelly, R.D. Horizontal Roll and Boundary-Layer Interrelationships Observed over Lake Michigan. J. Atmos. Sci. 1984, 41, 1816–1826. [Google Scholar] [CrossRef]
- Christian, T.W.; Wakimoto, R.M. The Relationship between Radar Reflectivities and Clouds Associated with Horizontal Roll Convection on 8 August 1982. Mon. Weather Rev. 1989, 117, 1530–1544. [Google Scholar] [CrossRef]
- Etling, D.; Brown, R.A. Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteorol. 1993, 65, 215–248. [Google Scholar] [CrossRef]
- Young, G.S.; Kristovich, D.A.R.; Hjelmfelt, M.R.; Foster, R.C. Rolls, streets, waves, and more: A review of qua-si-two-dimensional structures in the atmospheric boundary layer. Bull. Am. Meteorol. Soc. 2002, 83, 997–1002. [Google Scholar] [CrossRef]
- Nolan, D.S. Instabilities in hurricane-like boundary layers. Dyn. Atmos. Oceans 2005, 40, 209–236. [Google Scholar] [CrossRef]
- Morrison, I.; Businger, S.; Marks, F.; Dodge, P.; Businger, J.A. An Observational Case for the Prevalence of Roll Vortices in the Hurricane Boundary Layer. J. Atmos. Sci. 2005, 62, 2662–2673. [Google Scholar] [CrossRef] [Green Version]
- Lorsolo, S.; Schroeder, J.L.; Dodge, P.; Marks, F. An Observational Study of Hurricane Boundary Layer Small-Scale Coherent Structures. Mon. Weather Rev. 2008, 136, 2871–2893. [Google Scholar] [CrossRef]
- Zhang, J.A.; Katsaros, K.B.; Black, P.G.; Lehner, S.; French, J.R.; Drennan, W.M. Effects of Roll Vortices on Turbulent Fluxes in the Hurricane Boundary Layer. Bound.-Layer Meteorol. 2008, 128, 173–189. [Google Scholar] [CrossRef]
- Foster, R. Signature of Large Aspect Ratio Roll Vortices in Synthetic Aperture Radar Images of Tropical Cyclones. Oceanography 2013, 26, 58–67. [Google Scholar] [CrossRef]
- Ito, J.; Oizumi, T.; Niino, H. Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones. Sci. Rep. 2017, 7, 3798. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Zhang, J.A.; Chan, P.; Hon, K.; Lei, X.; Wang, Y. A direct aircraft observation of helical rolls in the tropical cyclone boundary layer. Sci. Rep. 2021, 11, 18771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res. Atmos. 2008, 113, D17104. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Large-Eddy Simulation of Roll Vortices in a Hurricane Boundary Layer. J. Atmos. Sci. 2012, 69, 3558–3575. [Google Scholar] [CrossRef]
- Green, B.W.; Zhang, F. Idealized Large-Eddy Simulations of a Tropical Cyclone–like Boundary Layer. J. Atmos. Sci. 2015, 72, 1743–1764. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jiang, Q. Impact of vertical wind shear on roll structure in idealized hurricane boundary layers. Atmos. Chem. Phys. 2017, 17, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pu, Z.; Gao, Z. Effects of Roll Vortices on the Evolution of Hurricane Harvey During Landfall. J. Atmos. Sci. 2021, 78, 1847–1867. [Google Scholar] [CrossRef]
- Momen, M.; Parlange, M.B.; Giometto, M.G. Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds. Geophys. Res. Lett. 2021, 48, e2020GL091695. [Google Scholar] [CrossRef]
- Mourad, P.D.; Brown, R.A. Multiscale Large Eddy States in Weakly Stratified Planetary Boundary Layers. J. Atmos. Sci. 1990, 47, 414–438. [Google Scholar] [CrossRef]
- Foster, R.C. Why Rolls are Prevalent in the Hurricane Boundary Layer. J. Atmos. Sci. 2005, 62, 2647–2661. [Google Scholar] [CrossRef]
- Pantillon, F.; Adler, B.; Corsmeier, U.; Knippertz, P.; Wieser, A.; Hansen, A. Formation of Wind Gusts in an Extratropical Cyclone in Light of Doppler Lidar Observations and Large-Eddy Simulations. Mon. Weather Rev. 2020, 148, 353–375. [Google Scholar] [CrossRef]
- Schiavone, J.A.; Gao, K.; Robinson, D.A.; Johnsen, P.J.; Gerbush, M.R. Large Roll Vortices Exhibited by Post-Tropical Cyclone Sandy during Landfall. Atmosphere 2021, 12, 259. [Google Scholar] [CrossRef]
- NOAA National Weather Service (NWS). Radar Operations Center (1991): NOAA Next Generation Radar (NEXRAD) Level 2 Base Data. Products N0U, N0Q. NOAA National Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00345/html (accessed on 18 June 2019).
- NOAA. Earth System Research Laboratories (ESRL) Radiosonde Database. 2020. Available online: https://ruc.noaa.gov/raobs/ (accessed on 21 August 2020).
- NOAA. National Hurricane Center (NHC) Aircraft Reconnaissance Data. 2020. Available online: https://www.nhc.noaa.gov/recon.php (accessed on 28 August 2020).
- Rutgers. New Jersey Weather Network. 2013. Available online: https://www.njweather.org/data/5min (accessed on 4 June 2013).
- NOAA. National Data Buoy Center. 2016. Available online: https://www.ndbc.noaa.gov/ (accessed on 19 January 2016).
- Chrisman, J.N.; Smith, S.D. Enhanced velocity azimuth display wind profile (EVWP) function: P4.7—Function for the WSR-88D. In Proceedings of the 34th Conference on Radar Meteorology, Williamsburg, VA, USA, 5–9 October 2009. [Google Scholar]
- Blake, E.S.; Kimberlain, T.B.; Berg, R.J.; Cangialosi, J.P.; Beven, J.L., III. Tropical Cyclone Report: Hurricane Sandy (AL182012); Technical Report AL182012; NOAA/National Hurricane Center: Miami, FL, USA, 2013; p. 157. [Google Scholar]
- Wyngaard, J.C. Toward numerical modeling in the “terra incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Haupt, S.E.; Kosovic, B.; Shaw, W.; Berg, L.K.; Churchfield, M.; Cline, J.; Draxl, C.; Ennis, B.; Koo, E.; Kotamarthi, R.; et al. On Bridging A Modeling Scale Gap: Mesoscale to Microscale Coupling for Wind Energy. Bull. Am. Meteorol. Soc. 2019, 100, 2533–2550. [Google Scholar] [CrossRef]
- LeMone, M.A.; Angevine, W.M.; Bretherton, C.S.; Chen, F.; Dudhia, J.; Fedorovich, E.; Katsaros, K.B.; Lenschow, D.H.; Mahrt, L.; Patton, E.G.; et al. 100 Years of Progress in Boundary Layer Meteorology. Meteorol. Monogr. 2019, 59, 9.1–9.85. [Google Scholar] [CrossRef]
- Johnsen, P.; Straka, M.; Shapiro, M.; Norton, A.; Galarneau, T. Petascale WRF simulation of Hurricane Sandy: Deployment of NCSA’s Cray XE6 Blue Waters. In Proceedings of the SC13—International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 17–21 November 2013. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Zhang, D.-L.; Anthes, R.A. A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data. J. Appl. Meteorol. 1982, 21, 1594–1609. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Q.; Li, Y. Tornado-scale vortices in the tropical cyclone boundary layer: Numerical simulation with the WRF–LES framework. Atmos. Chem. Phys. 2019, 19, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Nolan, D.S.; McNoldy, B.D.; Yunge, J. Evaluation of the Surface Wind Field over Land in WRF Simulations of Hurricane Wilma (2005). Part I: Model Initialization and Simulation Validation. Mon. Weather. Rev. 2021, 149, 679–695. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Vertical Eddy Diffusivity Parameterization Based on a Large-Eddy Simulation and Its Impact on Prediction of Hurricane Landfall. Geophys. Res. Lett. 2021, 48, e2020GL090703. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Knievel, J.C.; Nolan, D.S. Evaluation of boundary-layer and urban-canopy parameterizations for simulating wind in Miami during Hurricane Irma (2017). Mon. Weather Rev. 2021, 149, 2321–2349. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Schiavone, J.A.; Johnsen, P.J. High resolution WRF simulation of Hurricane Sandy (2012) wind during landfall. Zenodo. 2020. Available online: https://zenodo.org/record/3765261 (accessed on 24 April 2020).
- Gao, K.; Ginis, I. On the Characteristics of Linear-Phase Roll Vortices under a Moving Hurricane Boundary Layer. J. Atmos. Sci. 2018, 75, 2589–2598. [Google Scholar] [CrossRef]
Instrument | Horizontal Range | Vertical Range | Geographical Resolution | Temporal Range | Temporal Resolution |
---|---|---|---|---|---|
Radar scans | All of NJ | 5° cone | 1 km × 0.25° | 1200–0600 UTC | ~6 min |
NJ Mesonet | All of NJ | Near surface | ~20 km | 1200–0600 UTC | 5 min |
Buoys | 2 sites | Near surface | 2 sites | 1200–0600 UTC | 1 h |
Radar VAD | 1 site | 0–5 km | 1 site | 1200–0600 UTC | 1 h |
Rawinsonde | 1 site | 0–5 km | 1 site | 1200–0000 UTC | 6 h |
Dropsonde | 1 site | 0–1 km | 1 site | 1 event | 1 event |
Airstream Sector | Cold | Warm | Seclusion |
---|---|---|---|
Elevation of maximum dΘ/dz in capping stable layer (km) | 1.5 | 4.9 | 2.5 |
Maximum dΘ/dz of capping stable layer (K/km) | 11.8 | 11.7 | 10.6 |
Mean dΘ/dz of lowest 1 km layer (K/km) | 5.3 | 4.5 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavone, J.A. Airstream Association of Large Boundary Layer Rolls during Extratropical Transition of Post-Tropical Cyclone Sandy (2012). Meteorology 2023, 2, 368-386. https://doi.org/10.3390/meteorology2030022
Schiavone JA. Airstream Association of Large Boundary Layer Rolls during Extratropical Transition of Post-Tropical Cyclone Sandy (2012). Meteorology. 2023; 2(3):368-386. https://doi.org/10.3390/meteorology2030022
Chicago/Turabian StyleSchiavone, James A. 2023. "Airstream Association of Large Boundary Layer Rolls during Extratropical Transition of Post-Tropical Cyclone Sandy (2012)" Meteorology 2, no. 3: 368-386. https://doi.org/10.3390/meteorology2030022
APA StyleSchiavone, J. A. (2023). Airstream Association of Large Boundary Layer Rolls during Extratropical Transition of Post-Tropical Cyclone Sandy (2012). Meteorology, 2(3), 368-386. https://doi.org/10.3390/meteorology2030022