Antineutrino Opacity in Neutron Stars in Models Constrained by Recent Terrestrial Experiments and Astrophysical Observations
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Modeling of Nuclear Matter
2.1.1. E-RMF Model
2.1.2. KIDS-EDF Model
3. Neutrino-NS Matter Constituent Scattering
Neutral Current Interaction
4. Numerical Results and Discussions
5. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NC | neutral current |
NS | neutron star |
KIDS-EDF | Korea-IBS-Daegu-SKKU energy density functional |
E-RMF | extended relativistic mean-field |
ADCS | antineutrino differential cross-section |
AMFP | antineutrino mean free path |
PNS | proto-neutron star |
NM | nuclear matter |
ChPT | chiral perturbation theory |
HIC | heavy ion collision |
NMFP | neutrino mean free path |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.S.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN 1987a. Phys. Rev. D 1988, 38, 448–458. [Google Scholar] [CrossRef]
- Burrows, A.; Lattimer, J.M. Neutrinos from SN 1987A. Astrophys. J. Lett. 1987, 318, L63–L68. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophys. J. 2017, 835, 151. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Perez-Garcia, M.A. Realistic neutrino opacities for supernova simulations with correlations and weak magnetism. Phys. Rev. C 2003, 68, 025803. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Sulaksono, A.; Mart, T. Effects of the neutrino electromagnetic form factors on the neutrino and antineutrino mean free paths in dense matter. Nucl. Phys. A 2007, 782, 400–405. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- Pattnaik, J.A.; Panda, R.N.; Bhuyan, M.; Patra, S.K. Constraining the relativistic mean-field models from PREX-2 data: Effective forces revisited *. Chin. Phys. C 2022, 46, 094103. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P. Implications of PREX-2 data on the electron-neutrino opacity in dense matter. Phys. Rev. C 2021, 104, 065802. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef]
- Papakonstantinou, P.; Park, T.S.; Lim, Y.; Hyun, C.H. Density dependence of the nuclear energy-density functional. Phys. Rev. C 2018, 97, 014312. [Google Scholar] [CrossRef]
- Mezzacappa, A.; Liebendoerfer, M.; Messer, O.E.B.; Hix, W.R.; Thielemann, F.K.; Bruenn, S.W. The Simulation of a Spherically Symmetric Supernova of a 13 Solar Mass Star with Boltzmann Neutrino Transport, and its Implications for the Supernova Mechanism. Phys. Rev. Lett. 2001, 86, 1935–1938. [Google Scholar] [CrossRef]
- Rampp, M.; Janka, H.T. Spherically symmetric simulation with Boltzmann neutrino transport of core collapse and post-bounce evolution of a 15 solar mass star. Astrophys. J. Lett. 2000, 539, L33–L36. [Google Scholar] [CrossRef]
- Furnstahl, R.J.; Serot, B.D.; Tang, H.B. A Chiral effective Lagrangian for nuclei. Nucl. Phys. A 1997, 615, 441–482, Erratum in Nucl. Phys. A 1998, 640, 505–505. [Google Scholar] [CrossRef]
- Furnstahl, R.J.; Serot, B.D.; Tang, H.B. Analysis of chiral mean field models for nuclei. Nucl. Phys. A 1996, 598, 539–582. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Gil, H.; Nam, S.i.; Hyun, C.H. Effects of Symmetry Energy on the Equation of State for Hybrid Neutron Stars. arXiv 2023, arXiv:2307.09038. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Kalempouw-Williams, C.; Sulaksono, A.; Mart, T. Neutron fraction and neutrino mean free path predictions in relativistic mean field models. Phys. Rev. C 2004, 70, 068801. [Google Scholar] [CrossRef]
- Tews, I.; Krüger, T.; Hebeler, K.; Schwenk, A. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. Phys. Rev. Lett. 2013, 110, 032504. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Hutauruk, P.T.P.; Gil, H.; Nam, S.i.; Hyun, C.H. Neutrino propagation in the neutron star with uncertainties from nuclear, hadron, and particle physics. Prog. Theor. Exp. Phys. 2023, 2023, 063D01. [Google Scholar] [CrossRef]
- Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R. A Skyrme parametrization from subnuclear to neutron star densities. 2. Nuclei far from stabilities. Nucl. Phys. A 1998, 635, 231–256, Erratum in Nucl. Phys. A 1998, 643, 441–441. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Gil, H.; Nam, S.i.; Hyun, C.H. Effect of nucleon effective mass and symmetry energy on the neutrino mean free path in a neutron star. Phys. Rev. C 2022, 106, 035802. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Sulaksono, A.; Tsushima, K. Effects of neutrino magnetic moment and charge radius constraints and medium modifications of the nucleon form factors on the neutrino mean free path in dense matter. Nucl. Phys. A 2022, 1017, 122356. [Google Scholar] [CrossRef]
- Reddy, S.; Prakash, M.; Lattimer, J.M. Neutrino interactions in hot and dense matter. Phys. Rev. D 1998, 58, 013009. [Google Scholar] [CrossRef]
- Hutauruk, P.T.P.; Oh, Y.; Tsushima, K. Effects of medium modifications of nucleon form factors on neutrino scattering in dense matter. JPS Conf. Proc. 2019, 26, 024031. [Google Scholar]
- Hutauruk, P.T.P.; Oh, Y.; Tsushima, K. The impact of medium modifications of the nucleon weak and electromagnetic form factors on the neutrino mean free path in dense matter. Phys. Rev. D 2018, 98, 013009. [Google Scholar] [CrossRef]
- Hutauruk, P.T. Neutrino Mean Free Path in Neutron Star. arXiv 2010, arXiv:1007.4007. [Google Scholar]
- Sulaksono, A.; Kalempouw-Williams, C.; Hutauruk, P.T.P.; Mart, T. Neutrino electromagnetic form factors effect on the neutrino cross section in dense matter. Phys. Rev. C 2006, 73, 025803. [Google Scholar] [CrossRef]
- Sulaksono, A.; Hutauruk, P.T.P.; Mart, T. Isovector channel role of relativistic mean field models in the neutrino mean free path. Phys. Rev. C 2005, 72, 065801. [Google Scholar] [CrossRef]
- Kalempouw-Williams, C.; Hutauruk, P.T.P.; Sulaksono, A.; Mart, T. Neutrino electromagnetic form factor and oscillation effects on neutrino interaction with dense matter. Phys. Rev. D 2005, 71, 017303. [Google Scholar] [CrossRef]
0.559 | 0.832 | 0.820 | 1.043 | 0.782 | 0.923 | 0.872 | 0.160 | 2.606 | ||
1.694 | −0.484 | 1.010 | 0.424 | 0.114 | 0.645 | 0.000 | 18.257 | 2.0000 | −1.468 | 0.220 |
Parameters | KIDS0 | KIDSA |
---|---|---|
2182.404 | ||
275.724 | 276.058 | |
0.000 | 0.000 | |
0.000 | 0.000 | |
12,216.730 | 14,058.746 | |
−11,969.990 | −73,482.960 | |
571.074 | ||
29,485.421 | 122,670.831 | |
0.000 | 0.000 | |
−22,955.280 | −73,105.329 | |
108.359 | 92.023 | |
0.991 | 1.004 | |
0.819 | 0.827 | |
240 | 230 | |
J | 32.8 | 33 |
L | 49.1 | 66 |
Target | ||
---|---|---|
n | ||
p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutauruk, P.T.P. Antineutrino Opacity in Neutron Stars in Models Constrained by Recent Terrestrial Experiments and Astrophysical Observations. Astronomy 2024, 3, 240-254. https://doi.org/10.3390/astronomy3030015
Hutauruk PTP. Antineutrino Opacity in Neutron Stars in Models Constrained by Recent Terrestrial Experiments and Astrophysical Observations. Astronomy. 2024; 3(3):240-254. https://doi.org/10.3390/astronomy3030015
Chicago/Turabian StyleHutauruk, Parada T. P. 2024. "Antineutrino Opacity in Neutron Stars in Models Constrained by Recent Terrestrial Experiments and Astrophysical Observations" Astronomy 3, no. 3: 240-254. https://doi.org/10.3390/astronomy3030015
APA StyleHutauruk, P. T. P. (2024). Antineutrino Opacity in Neutron Stars in Models Constrained by Recent Terrestrial Experiments and Astrophysical Observations. Astronomy, 3(3), 240-254. https://doi.org/10.3390/astronomy3030015