# Cosmography of the Minimally Extended Varying Speed-of-Light Model

## Abstract

**:**

## 1. Introduction

## 2. Brief Review of the Minimally Extended Varying Speed-of-Light (meVSL) Model

#### 2.1. Cosmological Redshift

#### 2.2. The Possibility of Varying Speed-of-Light Theory in the Robertson–Walker Metric

#### 2.3. The Modification of Einstein’s Field Equations

## 3. Cosmolography of Varying Speed-of-Light Models

## 4. Observation

## 5. Parameters

## 6. Discussion

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Harrison, E.R. Observational tests in cosmology. Nature
**1976**, 260, 591–592. [Google Scholar] [CrossRef] - Visser, M. Jerk, snap and the cosmological equation of state. Class. Quantum Gravity
**2004**, 21, 2603–2616. [Google Scholar] [CrossRef] - Visser, M. Cosmography: Cosmology without the Einstein equations. Gen. Relativ. Gravit.
**2005**, 37, 1541–1548. [Google Scholar] [CrossRef] - Cattoen, C.; Visser, M. Cosmography: Extracting the Hubble series from the supernova data. arXiv
**2007**, arXiv:gr-qc/0703122. [Google Scholar] - Cattoen, C.; Visser, M. The Hubble series: Convergence properties and redshift variables. Class. Quantum Gravity
**2007**, 24, 5985–5998. [Google Scholar] [CrossRef] - Xu, L.; Wang, Y. Cosmography: Supernovae Union2, Baryon Acoustic Oscillation, Observational Hubble Data and Gamma Ray Bursts. Phys. Lett B
**2011**, 702, 114–120. [Google Scholar] [CrossRef] - Luongo, O. Cosmography with the Hubble parameter. Mod. Phys. Lett. A
**2011**, 26, 1459–1466. [Google Scholar] [CrossRef] - Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D
**2012**, 86, 123516. [Google Scholar] [CrossRef] - Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci.
**2012**, 342, 155–228. [Google Scholar] [CrossRef] - Aviles, A.; Bravetti, A.; Capozziello, S.; Luongo, O. Updated constraints on f(R) gravity from cosmography. Phys. Rev. D
**2013**, 87, 044012. [Google Scholar] [CrossRef] - Busti, V.C.; Cruz-Dombriz, ḋ.; Dunsby, P.K.S.; Sáez-Gómez, D. Is cosmography a useful tool for testing cosmology? Phys. Rev. D
**2015**, 92, 123512. [Google Scholar] [CrossRef] - Dunsby, P.K.S.; Luongo, O. On the theory and applications of modern cosmography. Int. J. Geom. Meth. Mod. Phys.
**2016**, 13, 1630002. [Google Scholar] [CrossRef] - Luongo, O.; Pisani, G.B.; Troisi, A. Cosmological degeneracy versus cosmography: A cosmographic dark energy model. Int. J. Mod. Phys. D
**2016**, 26, 1750015. [Google Scholar] [CrossRef] - Zhou, Y.N.; Liu, D.Z.; Zou, X.B.; Wei, H. New generalizations of cosmography inspired by the Padé approximant. Eur. Phys. J. C
**2016**, 76, 281. [Google Scholar] [CrossRef] - de la Cruz-Dombriz, A. Limitations of cosmography in extended theories of gravity. arXiv
**2016**, arXiv:1604.07355. [Google Scholar] - Bolotin, Y.L.; Konchtnyi, M.I.; Lemets, O.A.; Zazunov, L.G. Cosmography of Cardassian model. arXiv
**2017**, arXiv:1706.09710. [Google Scholar] - de la Cruz Dombriz, Á. Towards New Constraints in Extended Theories of Gravity: Cosmography and Gravitational-Wave Signals from Neutron Stars. Galaxies
**2018**, 6, 28. [Google Scholar] [CrossRef] - Pannia, F.A.T.; Bergliaffa, S.E.P.; Manske, N. Cosmography and the redshift drift in Palatini $f\left(\mathcal{R}\right)$ theories. Eur. Phys. J. C
**2019**, 79, 267. [Google Scholar] [CrossRef] - Bolotin, Y.L.; Cherkaskiy, V.A.; Ivashtenko, O.Y.; Konchatnyi, M.I.; Zazunov, L.G. Applied Cosmography: A Pedagogical Review. arXiv
**2018**, arXiv:1812.02394. [Google Scholar] - Yin, Z.Y.; Wei, H. Observational Constraints on Growth Index with Cosmography. Eur. Phys. J. C
**2019**, 79, 698. [Google Scholar] [CrossRef] - Li, E.K.; Du, M.; Xu, L. General Cosmography Model with Spatial Curvature. Mon. Not. R. Astron. Soc.
**2020**, 491, 4960–4972. [Google Scholar] [CrossRef] - Capozziello, S.; D’Agostino, R.; Luongo, O. Extended Gravity Cosmography. Int. J. Mod. Phys. D
**2019**, 28, 1930016. [Google Scholar] [CrossRef] - Capozziello, S.; D’Agostino, R.; Luongo, O. High-redshift cosmography: Auxiliary variables versus Padé polynomials. Mon. Not. R. Astron. Soc.
**2020**, 494, 2576–2590. [Google Scholar] [CrossRef] - Lizardo, A.; Amante, M.H.; García-Aspeitia, M.A.; Magaña, J.; Motta, V. Cosmography using strong-lensing systems and cosmic chronometers. Mon. Not. R. Astron. Soc.
**2021**, 507, 5720–5731. [Google Scholar] [CrossRef] - Hu, J.P.; Wang, F.Y. High-redshift cosmography: Application and comparison with different methods. Astron. Astrophys.
**2022**, 661, A71. [Google Scholar] [CrossRef] - Martins, C.J.A.P.; Ferreira, F.P.S.A.; Marto, P.V. Varying fine-structure constant cosmography. Phys. Lett. B
**2022**, 827, 137002. [Google Scholar] [CrossRef] - Rocha, B.A.R.; Martins, C.J.A.P. Redshift drift cosmography with ELT and SKAO measurements. Mon. Not. R. Astron. Soc.
**2022**, 518, 2853–2869. [Google Scholar] [CrossRef] - Gao, J.; Zhou, Z.; Du, M.; Zou, R.; Hu, J.; Xu, L. A Measurement of Hubble Constant Using Cosmographic Approach from Fast Radio Bursts and SNe Ia. arXiv
**2023**, arXiv:2307.08285. [Google Scholar] - Petreca, A.T.; Benetti, M.; Capozziello, S. Beyond ΛCDM with f(z)CDM: Criticalities and solutions of Padé Cosmography. Phys. Dark Universe
**2023**, 44, 101453. [Google Scholar] [CrossRef] - Zhang, K.; Zhou, T.; Xu, B.; Huang, Q.; Yuan, Y. Joint Constraints on the Hubble Constant, Spatial Curvature, and Sound Horizon from the Late-time Universe with Cosmography. Astrophys. J.
**2023**, 957, 5. [Google Scholar] [CrossRef] - Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern1, M.; Hill, R.S.; Odegard, N.; et al. Nine-yearwilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results. Astrophys. J. Suppl. Ser.
**2013**, 208, 20. [Google Scholar] [CrossRef] - Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys.
**2020**, 641, A1. [Google Scholar] [CrossRef] - Guzzo, L.; Bel, J.; Bianchi, D.; Carbone, C.; Granett, B.R.; Hawken, A.J.; Mohammad, F.G.; Pezzotta, A.; Rota, S.; Zennaro, M. Measuring the Universe with galaxy redshift surveys. In Toward a Science Campus in Milan: A Snapshot of Current Research at the Physics Department Aldo Pontremoli; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar] [CrossRef]
- Cawthon, R.; Elvin-Poole, J.; Porredon, A.; Crocce, M.; Giannini, G.; Gatti, M.; Ross, A.J.; Rykoff, E.S.; Rosell, A.C.; DeRose, J.; et al. Dark Energy Survey Year 3 Results: Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS. Mon. Not. R. Astron. Soc.
**2022**, 513, 5517. [Google Scholar] [CrossRef] - Robertson, H.P. On the Foundations of Relativistic Cosmology. Proc. Natl. Acad. Sci. USA
**1929**, 15, 822–829. [Google Scholar] [CrossRef] [PubMed] - Robertson, H.P. Relativistic Cosmology. Rev. Mod. Phys.
**1933**, 5, 62. [Google Scholar] [CrossRef] - Walker, A.G.; Milne, E.A. On the Formal Comparison of Milne’s Kinematical System with the Systems of General Relativity. Mon. Not. R. Astron. Soc.
**1935**, 95, 263. [Google Scholar] [CrossRef] - Walker, A.G. On Milne’s theory of world-structure. Proc. Lond. Math. Soc.
**1937**, 42, 90–127. [Google Scholar] [CrossRef] - Morin, D. Introduction to Classical Mechanics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Weyl, H. Republication of: On the general relativity theory. Gen. Relativ. Gravit.
**2009**, 41, 1661. [Google Scholar] [CrossRef] - Islam, J.N. An Introduction to Mathematical Cosmology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Narlikar, J.V. An Introduction to Cosmology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hobson, M.P.; Efstathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Grøn, Ø.; Hervik, S. Einstein’s General Theory of Relativity; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ryder, L. Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Choquet-Bruhat, Y. Introduction to General Relativity, Black Holes and Cosmology; Oxford University Press: Cambridge, UK, 2015. [Google Scholar]
- Roos, M. Introduction to Cosmology; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Guidry, M. Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Ferrari, V.; Gualtieri, L.; Pani, P. General Relativity and its Applications: Black Holes, Compact Stars and Gravitational Waves; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Das, A. The Special Theory of Relativity, A Mathematical Exposition; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Schutz, J. Independent Axioms for Minkowski Spacetime; Addison Wesley Longman Limited: London, UK, 1997. [Google Scholar]
- Lee, S. The minimally extended Varying Speed of Light (meVSL). J. Cosmol. Astropart. Phys.
**2021**, 8, 54. [Google Scholar] [CrossRef] - Barrow, J.D. Cosmologies with varying light speed. Phy. Rev. D
**1988**, 59, 043515. [Google Scholar] [CrossRef] - Einstein, A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik
**1911**, 35, 898–906. [Google Scholar] [CrossRef] - Dicke, R. Gravitation without a Principle of Equivalence. Rev. Mod. Phys.
**1957**, 29, 363–376. [Google Scholar] [CrossRef] - Petit, J.P. An interpretation of cosmological model with variable light velocity. Mod. Phys. Lett. A
**1988**, 3, 1527–1532. [Google Scholar] [CrossRef] - Petit, J.P. Cosmological model with variable light velocity: The interpretation of red shifts. Mod. Phys. Lett. A
**1988**, 3, 1733–1744. [Google Scholar] [CrossRef] - Petit, J.P.; Viton, M. Gauge cosmological model with variable light velocity. Comparizon with QSO observational data. Mod. Phys. Lett. A
**1989**, 4, 2201–2210. [Google Scholar] [CrossRef] - Midy, P.; Petit, J.P. Scale invariant cosmology. Int. J. Mod. Phys. D
**1989**, 8, 271–280. [Google Scholar] [CrossRef] - Moffat, J.W. Superluminary universe: A Possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. D
**1993**, 2, 351–366. [Google Scholar] [CrossRef] - Petit, J.P. Twin Universe Cosmology. Astrophys. Space Sci.
**1995**, 226, 273. [Google Scholar] [CrossRef] - Albrecht, A.; Magueijo, J. A Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D
**1999**, 59, 043516. [Google Scholar] [CrossRef] - Barrow, J.D.; Magueijo, J. Solutions to the quasi-flatness and quasilambda problems. Phys. Lett. B
**1999**, 447, 246. [Google Scholar] [CrossRef] - Clayton, M.A.; Moffat, J.W. Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B
**1999**, 460, 263–270. [Google Scholar] [CrossRef] - Barrow, J.D.; Magueijo, J. Solving the flatness and quasiflatness problems in Brans-Dicke cosmologies with a varying light speed. Class. Quantum Gravity
**1999**, 16, 1435–1454. [Google Scholar] [CrossRef] - Clayton, M.A.; Moffat, J.W. Scalar tensor gravity theory for dynamical light velocity. Phys. Lett. B
**2000**, 477, 269–275. [Google Scholar] [CrossRef] - Brandenberger, R.H.; Magueijo, J. Imaginative cosmology. In Large Scale Structure Formation; Springer: Dordrecht, The Netherlands, 2000; pp. 331–371. [Google Scholar]
- Bassett, B.A.; Liberati, S.; Molina-Paris, C.; Visser, M. Geometrodynamics of variable speed of light cosmologies. Phys. Rev. D
**2000**, 62, 103518. [Google Scholar] [CrossRef] - Gopakumar, P.; Vijayagovindan, G.V. Solutions to cosmological problems with energy conservation and varying c, G and Lambda. Mod. Phys. Lett. A
**2001**, 16, 957–962. [Google Scholar] [CrossRef] - Magueijo, J. Covariant and locally Lorentz invariant varying speed of light theories. Phys. Rev. D
**2000**, 62, 103521. [Google Scholar] [CrossRef] - Magueijo, J. Stars and black holes in varying speed of light theories. Phys. Rev. D
**2001**, 63, 043502. [Google Scholar] [CrossRef] - Magueijo, J. New varying speed of light theories. Rep. Prog. Phys.
**2003**, 66, 2025. [Google Scholar] [CrossRef] - Magueijo, J.; Moffat, J.W. Comments on ‘Note on varying speed of light theories’. Gen. Relativ. Gravit.
**2008**, 40, 1797–1806. [Google Scholar] [CrossRef] - Petit, J.P.; d’Agostini, G. Bigravity: A Bimetric model of the Universe with variable constants, inluding VSL (variable speed of light). arXiv
**2008**, arXiv:0803.1362. [Google Scholar] - Roshan, M.; Nouri, M.; Shojai, F. Cosmological solutions of time varying speed of light theories. Phys. Lett. B
**2009**, 672, 197–202. [Google Scholar] [CrossRef] - Sanejouand, Y.H. About some possible empirical evidences in favor of a cosmological time variation of the speed of light. Europhys. Lett.
**2009**, 88, 59002. [Google Scholar] [CrossRef] - Nassif, C.; de Faria, A.C.A. Variation of the speed of light with temperature of the expanding universe. Phys. Rev. D
**2012**, 86, 027703. [Google Scholar] [CrossRef] - Moffat, J.W. Variable Speed of Light Cosmology, Primordial Fluctuations and Gravitational Waves. Eur. Phys. J. C
**2016**, 76, 130. [Google Scholar] [CrossRef] - Ravanpak, A.; Farajollahi, H.; Fadakar, G.F. Normal DGP in varying speed of light cosmology. Res. Astron. Astrophys.
**2017**, 17, 26. [Google Scholar] [CrossRef] - Costa, R.; Cuzinatto, R.R.; Ferreira, E.M.G.; Franzmann, G. Covariant c-flation: A variational approach. Int. J. Mod. Phys. D
**2019**, 28, 1950119. [Google Scholar] [CrossRef] - Nassif, C.; Silva, F.A. Variation of the speed of light and a minimum speed in the scenario of an inflationary universe with accelerated expansion. Phys. Dark Universe
**2018**, 22, 127. [Google Scholar] - Lee, S. Constraining minimally extended varying speed of light by cosmological chronometers. Mon. Not. R. Astron. Soc.
**2023**, 522, 3248–3255. [Google Scholar] [CrossRef] - Lee, S. Constraint on the minimally extended varying speed of light using time dilations in Type Ia supernovae. Mon. Not. R. Astron. Soc.
**2023**, 524, 4019–4023. [Google Scholar] [CrossRef] - Lee, S. A Viable Varying Speed of Light Model in the RW Metric. Found. Phys.
**2023**, 53, 40. [Google Scholar] [CrossRef] - Lee, S. Review on the Minimally Extended Varying Speed of Light Model. Preprints
**2024**, 2024030236. [Google Scholar] [CrossRef] - Lee, S. The cosmological evolution condition of the Planck constant in the varying speed of light models through adiabatic expansion. Phys. Dark Universe
**2023**, 42, 101286. [Google Scholar] [CrossRef] - Leibundgut, B. Time dilation in the light curve of the distant type ia supernovae sn 1995 k. Astrophys. J. Lett.
**1996**, 466, L21. [Google Scholar] [CrossRef] - Riess, A.G.; Filippenko, A.V.; Leonard, D.C.; Schmidt, B.P.; Suntzeff, N.; Phillips, M.M.; Schommer, R.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; et al. Time dilation from spectral feature age measurements of type ia supernovae. Astron. J.
**1997**, 114, 722. [Google Scholar] [CrossRef] - Foley, R.J.; Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Nugent, P.; Perlmutter, S. A Definitive measurement of time dilation in the spectral evolution of the moderate-redshift Type Ia supernova 1997 ex. Astrophys. J. Lett.
**2005**, 626, L11–L14. [Google Scholar] [CrossRef] - Blondin, S.; Tonry, J.L. Determining the Type, Redshift, and Age of a Supernova Spectrum. Astrophys. J.
**2007**, 666, 1024–1047. [Google Scholar] [CrossRef] - Blondin, S.; Davis, T.M.; Krisciunas, K.; Schmidt, B.P.; Sollerman, J.; Wood-Vasey, W.M.; Becker, A.C.; Challis, P.; Clocchiatti, A.; Damke, G.; et al. Time Dilation in Type Ia Supernova Spectra at High Redshift. Astrophys. J.
**2008**, 682, 724–736. [Google Scholar] [CrossRef] - Norris, J.P.; Nemiroff, R.J.; Scargle, J.D.; Kouveliotou, C.; Fishman, G.J.; Meegan, C.A.; Paciesas, W.S.; Bonnell, J.T. Detection of signature consistent with cosmological time dilation in gamma-ray bursts. Astrophys. J.
**1994**, 424, 540. [Google Scholar] [CrossRef] - Wijers, R.A.M.J.; Paczynski, B. On the nature of gamma-ray burst time dilations. Astrophys. J. Lett.
**1994**, 437, L107. [Google Scholar] [CrossRef] - Band, D. Cosmological time dilation in gamma-ray bursts? Astrophys. J. Lett.
**1994**, 432, L23. [Google Scholar] [CrossRef] - Meszaros, A.; Meszaros, P. Cosmological evolution and luminosity function effects on number counts, redshift and time dilation of bursting sources. Astrophys. J.
**1996**, 466, 29. [Google Scholar] [CrossRef] - Lee, T.T.; Petrosian, V. Time dilation of batse gamma-ray bursts. Astrophys. J.
**1997**, 474, 37. [Google Scholar] [CrossRef] - Chang, H.Y. Fourier analysis of gamma-ray burst light curves: Searching for direct signature of cosmological time dilation. Astrophys. J. Lett.
**2001**, 557, L85. [Google Scholar] [CrossRef] - Crawford, D.F. No Evidence of Time Dilation in Gamma-Ray Burst Data. arXiv
**2009**, arXiv:0901.4169. [Google Scholar] - Zhang, F.W.; Fan, Y.Z.; Shao, L.; Wei, D.M. Cosmological Time Dilation in Durations of Swift Long Gamma-Ray Bursts. Astrophys. J. Lett.
**2013**, 778, L11. [Google Scholar] [CrossRef] - Singh, A.; Desai, S. Search for cosmological time dilation from gamma-ray bursts—A 2021 status update. J. Cosmol. Astropart. Phys.
**2022**, 2, 10. [Google Scholar] [CrossRef] - Hawkins, M.R.S. Time dilation and quasar variability. Astrophys. J. Lett.
**2001**, 553, L97. [Google Scholar] [CrossRef] - Dai, D.C.; Starkman, G.D.; Stojkovic, B.; Stojkovic, D.; Weltman, A. Using quasars as standard clocks for measuring cosmological redshift. Phys. Rev. Lett.
**2012**, 108, 231302. [Google Scholar] [CrossRef] [PubMed] - Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Lewis, G.F.; Brewer, B.J. Detection of the cosmological time dilation of high-redshift quasars. Nat. Astron.
**2023**, 7, 1265–1269. [Google Scholar] [CrossRef] - Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J.
**2016**, 826, 56. [Google Scholar] [CrossRef] - Capozziello, S.; Lazkoz, R.; Salzano, V. Comprehensive cosmographic analysis by Markov Chain Method. Phys. Rev. D
**2011**, 84, 124061. [Google Scholar] [CrossRef] - Muthukrishna, D.; Parkinson, D. A cosmographic analysis of the transition to acceleration using SN-Ia and BAO. J. Cosmol. Astropart. Phys.
**2016**, 11, 052. [Google Scholar] [CrossRef] - Birrer, S.; Treu, T.; Rusu, C.E.; Bonvin, V.; Fassnacht, C.D.; Chan, J.H.H.; Agnello, A.; Shajib, A.J.; Chen, G.C.F.; Auger, M.; et al. H0LiCOW–IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206 + 4332 and a new measurement of the Hubble constant. Mon. Not. R. Astron. Soc.
**2019**, 484, 4726. [Google Scholar] [CrossRef] - Rezaei, M.; Pour-Ojaghi, S.; Malekjani, M. A Cosmography Approach to Dark Energy Cosmologies: New Constraints Using the Hubble Diagrams of Supernovae, Quasars, and Gamma-Ray Bursts. Astrophys. J.
**2020**, 900, 70. [Google Scholar] [CrossRef]

**Figure 1.**At $t={t}_{k}$, the values of physical quantities and constants, such as ${a}_{k}$, ${\rho}_{k}$, ${P}_{k}$, ${T}_{k}$, ${c}_{k}$, ${k}_{k}$, and ${\hslash}_{k}$, are fixed and independent of spatial position on the $t={t}_{k}$ hypersurface. As the universe expands, these quantities and constants transition to ${a}_{l}$, ${\rho}_{l}$, ${P}_{l}$, ${T}_{l}$, ${c}_{l}$, ${k}_{l}$, and ${\hslash}_{l}$. The CP and Weyl’s postulate do not restrict ${c}_{k}$ to be equal to ${c}_{l}$; its value is determined by the cosmological TD relation.

**Table 1.**Summary for cosmological evolutions of physical constants and quantities of the meVSL model. These relations satisfy all known local physics laws, including special relativity, thermodynamics, and electromagnetic force [52].

Local Physics Laws | Special Relativity | Electromagnetism | Thermodynamics |
---|---|---|---|

quantities | $m={m}_{0}{a}^{-b/2}$ | $e={e}_{0}{a}^{-b/4}\phantom{\rule{0.166667em}{0ex}},\lambda ={\lambda}_{0}a\phantom{\rule{0.166667em}{0ex}},\nu ={\nu}_{0}{a}^{-1+b/4}$ | $T={T}_{0}{a}^{-1}$ |

constants | $c=t{c}_{0}{a}^{b/4}\phantom{\rule{0.166667em}{0ex}},G={G}_{0}{a}^{b}$ | $\u03f5={\u03f5}_{0}{a}^{-b/4}\phantom{\rule{0.166667em}{0ex}},\mu ={\mu}_{0}{a}^{-b/4}\phantom{\rule{0.166667em}{0ex}},c={c}_{0}{a}^{b/4}$ | ${k}_{\mathrm{B}0}\phantom{\rule{0.166667em}{0ex}},\hslash ={\hslash}_{0}{a}^{-b/4}$ |

energies | $m{c}^{2}={m}_{0}{c}_{0}^{2}$ | $h\nu ={h}_{0}{\nu}_{0}{a}^{-1}$ | ${k}_{\mathrm{B}}T={k}_{\mathrm{B}|0}{T}_{0}{a}^{-1}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lee, S.
Cosmography of the Minimally Extended Varying Speed-of-Light Model. *Astronomy* **2024**, *3*, 100-113.
https://doi.org/10.3390/astronomy3020007

**AMA Style**

Lee S.
Cosmography of the Minimally Extended Varying Speed-of-Light Model. *Astronomy*. 2024; 3(2):100-113.
https://doi.org/10.3390/astronomy3020007

**Chicago/Turabian Style**

Lee, Seokcheon.
2024. "Cosmography of the Minimally Extended Varying Speed-of-Light Model" *Astronomy* 3, no. 2: 100-113.
https://doi.org/10.3390/astronomy3020007