Spin Optics for Gravitational Waves
Abstract
:1. Introduction
2. Linearization of Einstein Field Equations
Initial Conditions
3. Formulation of Spin Optics
3.1. Introduction of Null Tetrad
3.2. Introduction of Polarization Basis
3.3. Equations of Spin Optics
3.3.1. Defining the Hamiltonian
3.3.2. Solving Hamilton’s Equations of Motion
3.3.3. Polarization Equation
4. Applications
4.1. Gravitational Lensing of Gravitational Waves
4.2. Propagation of a Binary’s Gravitational Waves through an Expanding Universe
5. Conclusions and Discussions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Deriving Gravitational Wave Equations
Appendix B. Reproducing the Equations of Geometric Optics
Appendix C. Checking Self-Duality in the Spin Optics Approximation
References
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Dolan, S.R. Geometrical optics for scalar, electromagnetic and gravitational waves on curved spacetime. Int. J. Mod. Phys. D 2018, 27, 1843010. [Google Scholar] [CrossRef]
- Dolan, S.R. Higher-order geometrical optics for electromagnetic waves on a curved spacetime. arXiv 2018, arXiv:1801.02273. [Google Scholar] [CrossRef]
- Andersson, L.; Joudioux, J.; Oancea, M.A.; Raj, A. Propagation of polarized gravitational waves. Phys. Rev. D 2021, 103, 044053. [Google Scholar] [CrossRef]
- Oancea, M.A.; Joudioux, J.; Dodin, I.Y.; Ruiz, D.E.; Paganini, C.F.; Andersson, L. Gravitational spin Hall effect of light. Phys. Rev. D 2020, 102, 024075. [Google Scholar] [CrossRef]
- Yamamoto, N. Spin Hall effect of gravitational waves. Phys. Rev. D 2018, 98, 061701. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.-M. Notes on spinoptics in a stationary spacetime. Phys. Rev. D 2012, 86, 084005. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Maxwell equations in a curved spacetime: Spin optics approximation. Phys. Rev. D 2020, 102, 084013. [Google Scholar] [CrossRef]
- Mashhoon, B. Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit? Nature 1974, 250, 316–317. [Google Scholar] [CrossRef]
- Mashhoon, B. Influence of gravitation on the propagation of electromagnetic radiation. Phys. Rev. D 1975, 11, 2679–2684. [Google Scholar] [CrossRef]
- Ling, X.; Zhou, X.; Huang, K.; Liu, Y.; Qiu, C.-W.; Luo, H.; Wen, S. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 2017, 80, 066401. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bliokh, Y.P. Optical magnus effect as a consequence of Berry phase anisotropy. J. Exp. Theor. Phys. Lett. 2004, 79, 519–522. [Google Scholar] [CrossRef]
- Hosten, O.; Kwiat, P. Observation of the Spin Hall Effect of Light via Weak Measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliokh, K.; Niv, A.; Kleiner, V.; Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2008, 2, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, G.; Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 1999, 59, 14915–14925. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photon. 2015, 9, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Oancea, M.A.; Paganini, C.F.; Joudioux, J.; Andersson, L. An overview of the gravitational spin Hall effect. arXiv 2019, arXiv:1904.09963. [Google Scholar] [CrossRef]
- Harte, A.I. Gravitational lensing beyond geometric optics: I. Formalism and observables. Gen. Relativ. Gravit. 2019, 51, 14. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Shoom, A.A. Spinoptics in a stationary spacetime. Phys. Rev. D 2011, 84, 044026. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, P.; Bérard, A.; Mohrbach, H. Spin Hall effect of photons in a static gravitational field. Phys. Rev. D 2007, 75, 084035. [Google Scholar] [CrossRef] [Green Version]
- Shoom, A.A. Gravitational Faraday and spin-Hall effects of light. Phys. Rev. D 2021, 104, 084007. [Google Scholar] [CrossRef]
- Mathisson, M. Republication of: New mechanics of material systems. Gen. Relativ. Gravit. 2010, 42, 1011–1048. [Google Scholar] [CrossRef]
- Corinaldesi, E.; Papapetrou, A. Spinning test-particles in general relativity. II. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 209, 259–268. [Google Scholar] [CrossRef]
- Dixon, W.G. A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento 1964, 34, 317–339. [Google Scholar] [CrossRef]
- Saturnini, P. Un Modèle de Particule à Spin de Masse Nulle Dans le Champ de Gravitation. Ph.D. Thesis, Université de Provence, Marseille, France, 1976. [Google Scholar]
- Souriau, J.M. Modele de particule a spin dans le champ électromagnétique et gravitationnel. Ann. Inst. Henri Poincar A 1974, 20, 315. [Google Scholar]
- Cusin, G.; Lagos, M. Gravitational wave propagation beyond geometric optics. Phys. Rev. D 2020, 101, 044041. [Google Scholar] [CrossRef] [Green Version]
- Ezquiaga, J.M.; Holz, D.E.; Hu, W.; Lagos, M.; Wald, R.M. Phase effects from strong gravitational lensing of gravitational waves. Phys. Rev. D 2021, 103, 064047. [Google Scholar] [CrossRef]
- Duval, C.; Horváth, Z.; Horváthy, P.A. Fermat principle for spinning light. Phys. Rev. D 2006, 74, 021701. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R. Arrival time differences between gravitational waves and electromagnetic signals due to gravitational lensing. Astrophys. J. Lett. 2017, 835, 103. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.T. Gravitational Lensing of Gravitational Waves from Inspiraling Binaries by a Point Mass Lens. Phys. Rev. Lett. 1998, 80, 1138–1141. [Google Scholar] [CrossRef]
- Dahal, P.K. Review of pulsar timing array for gravitational wave research. J. Astrophys. Astron. 2020, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seoane, P.A.; Aoudia, S.; Babak, S.; Binétruy, P.; Berti, E.; Bohé, A.; Caprini, C.; Colpi, M.; Cornish, N.J.; Danzmann, K.; et al. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 2012, 29, 124016. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, P.; Bérard, A.; Mohrbach, H. Semiclassical dynamics of Dirac particles interacting with a static gravitational field. Phys. Lett. A 2007, 368, 356–361. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, P.K. Spin Optics for Gravitational Waves. Astronomy 2022, 1, 271-287. https://doi.org/10.3390/astronomy1030016
Dahal PK. Spin Optics for Gravitational Waves. Astronomy. 2022; 1(3):271-287. https://doi.org/10.3390/astronomy1030016
Chicago/Turabian StyleDahal, Pravin Kumar. 2022. "Spin Optics for Gravitational Waves" Astronomy 1, no. 3: 271-287. https://doi.org/10.3390/astronomy1030016
APA StyleDahal, P. K. (2022). Spin Optics for Gravitational Waves. Astronomy, 1(3), 271-287. https://doi.org/10.3390/astronomy1030016