Creating a CLOUDY-Compatible Database with CHIANTI Version 10 Data
Abstract
:1. Introduction
1.1. The CHIANTI Database
2. Ingesting a Fluid Atomic Database
2.1. A Database Strategy
2.2. Interpolating Effective Collision Strengths
- First we use scipy.interpolate.interp1d to find a best-fit function for the log of - relation for each transition of each ion. We omit points with and add them back in later.
- The best-fit function is then used to interpolate the set of that corresponds to a set of evenly spaced points. As most of the Ch7 files contained 11 spline points, we begin by using a set of 11 points.
- We find another function to fit the linearly spaced data with the same method as before.
- Then using the original set of temperature points and the new best-fit function we obtain a recalculation of the original - relation.
- The error () is computed to reveal how well the interpolated data has preserved the - relation for that transition,
- ith recalculated in transition;
- ith original in transition;
- number of points in the transition in Ch10.
Since in BT space represents the limit, in [7] is taken to be the collision strength at the high-temperature limit. We found that this value does not always smoothly follow from the - profile, which then skews our fits. Fitting only the values for which provides much improved fits from using the value at the high-temperature limit. - Then we repeat the previous steps for the linear - relation, and use the fit that corresponds to the smaller of the two absolute relative deviations.
- Next, a spline point is added after each iteration of this procedure that meets all of the following criteria:
- ;
- number of spline points ;
- .
The scale (linear or log) that produced the smaller error in the above step is continued to be used in the following iterations of this procedure.
2.3. Data Truncation
3. Testing the Reformatted Database: Effect on Cloudy Models
3.1. Time-Steady Model Simulations
- O iv: According to the review of CHIANTI 8 in [10], the collisional data from Liang et al. (2012) replaced those of Aggarwal and Keenan (2008).
- Ne v: According to the review of the Ch10 database in [7], a new model used to obtain 304 bound levels replaced a model using R-matrix calculations with only 49 levels.
- Mg iv: According to the review of CHIANTI 8 in [10], the previous CHIANTI versions contained limited data for this ion due to a lack of accuracy in the data.
3.2. Time-Dependent Model Simulations
- Fe xii: According to the review of the CHIANTI 8 database in [10], collisional data are obtained from the UK APAP network which includes large R-matrix calculations of 912 levels, replacing the previous R-matrix calculations of only 143 levels.
- Fe xiii: According to the review of the CHIANTI 8 database in [10], similar to Fe xii, atomic data from a larger R-matrix calculation (749 levels) replaced a smaller one (114 levels).
- Fe xiv: Collisional data for this ion have not changed since Ch7.
- mass deposition rate;
- Boltzmann constant;
- mean molecular weight;
- proton mass;
- frequency-integrated line cooling.
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BT | Burgess and Tully |
Ch10 | CHIANTI database version 10.0.1 |
Ch7 | CHIANTI database version 7.1 |
NOAI | Reprocessed CHIANTI v10.0.1 with no autoionizing levels |
Appendix A. Burgess and Tully Scaling
- Type 1 Optically allowed transitions with non-zero oscillator strengths.
- Type 2 Optically forbidden transitions induced by an electric or a magnetic multipole interaction.
- Type 3 Transition induced by exchange between incident and bound electrons resulting in a change in the spin of the ion.
- Type 4 Similar to Type 1 transition: an optically allowed transition but with a very low oscillator strength.
- Type 5 Transition involving dielectronic recombination excitation.
- Type 6 Forbidden type proton transitions.
- descaled collision strength;
- collision strength in BT space;
- scaling parameter;
- transition energy of in unit K.
Appendix B. CHIANTI File Formats
.elvlc files | |||
---|---|---|---|
Ch10 | Ch7 | Character Columns in Ch7 | |
Column 1 | Level Index | Level Index | 1–3 |
Column 2 | Level Configuration | Level Configuration | 5–26 |
Column 3 | - | Level Label String | omitted |
Column 4 | Spin Multiplicity () | Spin Multiplicity () | 27 |
Column 5 | Orbital Angular Momentum Symbol (L) | Orbital Angular Momentum Integer (L) | 30 |
Column 6 | Total Angular Momentum (J) | Orbital Angular Momentum Symbol (L) | 32 |
Column 7 | Observed Energy (cm) | Total Angular Momentum (J) | 35-37 |
Column 8 | Theoretical Energy (cm) | Statistical Weight (2J + 1) | 40 |
Column 9 | - | Observed Energy (cm) | 41–55 |
Column 10 | - | Observed Energy (Ry) | 56–70 |
Column 11 | - | Theoretical Energy (cm) | 71–85 |
Column 12 | - | Theoretical Energy (Ry) | 86–100 |
.wgfa files | |||
Ch10 | Ch7 | Character Columns in Ch7 | |
Column 1 | Lower Level Index | Lower Level Index | 1–5 |
Column 2 | Upper Level Index | Upper Level Index | 6–10 |
Column 3 | Wavelength (Angstroms) | Wavelength (Angstroms) | 11–25 |
Column 4 | gf Value (weighted oscillator strength) | gf Value | 32–40 |
Column 5 | Einstein A (radiative decay rate) (s) | Einstein A (s) | 47–55 |
Column 6 | Level Configuration | Level Configuration | omitted |
.scups and .splups files | |||
Row 1, Column 1 | Lower Level Index | Z (atomic number) | 1–3 |
Row 1, Column 2 | Upper Level Index | ion (no. of missing electrons) | 4–6 |
Row 1, Column 3 | Energy of Transition (Ry) | Lower Level Index | 7–9 |
Row 1, Column 4 | gf Value | Upper Level Index | 10–12 |
Row 1, Column 5 | High Temperature Limit (K) | BT92 Transition Type | 15 |
Row 1, Column 6 | Number of Scaled Temperatures | gf Value | 17–25 |
Row 1, Column 7 | BT Transition Type | Energy of Transition (Ry) | 27–35 |
Row 1, Column 8 | BT Scaling Parameter | BT92 Scaling Parameter | 37–45 |
Row 1, Column 9+ | - | Scaled Effective Collision Strengths (BT scale) | 47+ |
Row 2 | Scaled Temperatures (BT scale) | - | - |
Row 3 | Scaled Effective Collision Strengths (BT scale) | - | - |
References
- Ferl, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; Van Hoof, P.A.; Williams, R.J.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 release of Cloudy. Rev. Mex. Astron. Astrofísica 2017, 53, 385. [Google Scholar]
- Spitzer, L. Physical processes in the interstellar medium. In A Wiley-Interscience Publication; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Lykins, M.L.; Ferl, G.J.; Kisielius, R.; Chatzikos, M.; Porter, R.L.; van Hoof, P.A.; Williams, R.J.; Keenan, F.P.; Stancil, P.C. STOUT: Cloudy’s atomic and molecular database. Astrophys. J. 2015, 807, 118. [Google Scholar] [CrossRef] [Green Version]
- Young, P.R.; Landi, E.; Del Zanna, G.; Dere, K.P.; Mason, H.E. CHIANTI 7.1: A new database release for SDO data analysis. In SDO-3: Exploring the Network of SDO Science; FindScholars@UNH: Durham, NH, USA, 2013; p. 58. [Google Scholar]
- Schöier, F.L.; van der Tak, F.F.; van Dishoeck, E.F.; Black, J.H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 2005, 432, 369. [Google Scholar] [CrossRef] [Green Version]
- Dere, K.P.; Landi, E.; Mason, H.E.; Fossi, B.M.; Young, P.R. CHIANTI-an atomic database for emission lines-I. Wavelengths greater than 50 Å. Astron. Astrophys. Suppl. Ser. 1997, 125, 149. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E. CHIANTI—An atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 2021, 909, 38. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [Google Scholar]
- Péquignot, D. Model nebulae. In Proceedings of the Workshop Held at the Observatoire de Meudon, Meudon, France, 8–19 July 1985; Péquignot, D., Ed.; Publication de l’Observatoire deParis-Meudon: Meudon, France, 1986; Volume 17, p. 376. [Google Scholar]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E.; Mason, H.E. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015, 582, A56. [Google Scholar] [CrossRef]
- Burgess, A.; Tully, J.A. On the analysis of collision strengths and rate coefficients. Astron. Astrophys. 1992, 254, 436. [Google Scholar]
- Chatzikos, M.; Williams, R.J.; Ferl, G.J.; Canning, R.E.; Fabian, A.C.; Sanders, J.S.; van Hoof, P.A.; Johnstone, R.M.; Lykins, M.; Porter, R.L. Implications of coronal line emission in NGC 4696. Mon. Not. R. Astron. Soc. 2015, 446, 1234. [Google Scholar] [CrossRef]
- Gunasekera, C.M.; Ji, X.; Chatzikos, M.; Yan, R.; Ferl, G. Self-Consistent Grain Depletions and Abundances II: Effects on strong-line diagnostics of extragalactic H II regions. arXiv 2022, arXiv:2205.13023. [Google Scholar]
- Gnat, O.; Ferl, G.J. Ion-by-ion cooling efficiencies. Astrophys. J. Suppl. Ser. 2012, 199, 20. [Google Scholar] [CrossRef]
- van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1441412697. [Google Scholar]
1 | ADF04 data are available online at https://open.adas.ac.uk. |
2 | This repository is named after a type of distilled spirit typically found in South Asia. The version found in Sri Lanka is made of unopened flowers from coconut palm giving it the taste of Cognac and rum with floral notes. |
Ion | Ch10 Wavelength | Ch7 Wavelength |
---|---|---|
Al xii | 550.031 | 550.032 |
Al xii | 568.120 | 568.122 |
Ne viii | 770.428 | 770.410 |
Ne viii | 780.385 | 780.325 |
Ne vii | 887.293 | 887.279 |
Ne vii | 895.191 | 895.174 |
O vi | 1037.610 | 1037.620 |
O iv | 1397.230 | 1397.200 |
O iv | 1399.780 | 1399.770 |
O iv | 1401.160 | 1404.780 |
O iv | 1404.810 | 1404.780 |
C iv | 1550.770 | 1550.780 |
Ion | Wavelength | Transition | Time-Steady Simulations | Relative Intensity Change | Source of Change |
---|---|---|---|---|---|
O iv | 25.8863 | 1-2 | limit_lowd0.out | 0.472 | o_4.splups in CHIANTI 8 |
limit_lowdm6.out | 0.472 | ||||
nlr_paris.out | 0.261 | ||||
pn_ots.out | 0.183 | ||||
pn_paris.out | 0.181 | ||||
Ne v | 24.3109 | 1-2 | limit_lowd0.out | −0.441 | ne_5.splups in CHIANTI 10 |
limit_lowdm6.out | −0.440 | ||||
nlr_paris.out | −0.291 | ||||
pn_ots.out | −0.228 | ||||
pn_paris.out | −0.229 | ||||
pn_paris_cpre.out | −0.224 | ||||
Ne v | 14.3178 | 2-3 | limit_lowd0.out | −0.523 | ne_5.splups in CHIANTI 10 |
limit_lowdm6.out | −0.522 | ||||
nlr_paris.out | −0.411 | ||||
Mg iv | 4.48711 | 1-2 | pn_fluc.out | −0.167 | mg_4.splups in CHIANTI 8 |
pn_ots.out | −0.194 | ||||
pn_paris.out | −0.167 | ||||
nlr_paris_cpre.out | −0.192 | ||||
nlr_paris_fast.out | −0.191 |
Ion | Wavelength | Transition | Time-Dependent Simulations | Relative Log Luminosity Change | Source of Change |
---|---|---|---|---|---|
Fe12 | 2405.68 A | 1-2 | time_cool_cd.out | 0.367 | fe_12.splups in CHIANTI 10 |
time_cool_cd_eq.out | 0.367 | ||||
Fe12 | 2169.08 A | 1-3 | time_cool_cd.out | 0.214 | fe_12.splups in CHIANTI 10 |
time_cool_cd_eq.out | 0.214 | ||||
Fe12 | 1349.40 A | 1-4 | time_cool_cd.out | 0.431 | fe_12.splups in CHIANTI 10 |
time_cool_cd_eq.out | 0.432 | ||||
Fe12 | 1242.01 A | 1-5 | time_cool_cd.out | 0.427 | fe_12.splups in CHIANTI 10 |
time_cool_cd_eq.out | 0.428 | ||||
Fe13 | 1.07462 | 1-2 | time_cool_cd.out | −0.223 | fe_13.splups in CHIANTI 9 |
time_cool_cd_eq.out | −0.223 | ||||
Fe13 | 1.07978 | 2-3 | time_cool_cd.out | −0.315 | fe_13.splups in CHIANTI 8 |
time_cool_cd_eq.out | −0.316 | ||||
Fe14 | 5303.00 A | 1-2 | time_cool_cd.out | −0.281 | |
time_cool_cd_eq.out | −0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasekera, C.M.; Chatzikos, M.; Ferland, G.J. Creating a CLOUDY-Compatible Database with CHIANTI Version 10 Data. Astronomy 2022, 1, 255-270. https://doi.org/10.3390/astronomy1030015
Gunasekera CM, Chatzikos M, Ferland GJ. Creating a CLOUDY-Compatible Database with CHIANTI Version 10 Data. Astronomy. 2022; 1(3):255-270. https://doi.org/10.3390/astronomy1030015
Chicago/Turabian StyleGunasekera, Chamani M., Marios Chatzikos, and Gary J. Ferland. 2022. "Creating a CLOUDY-Compatible Database with CHIANTI Version 10 Data" Astronomy 1, no. 3: 255-270. https://doi.org/10.3390/astronomy1030015
APA StyleGunasekera, C. M., Chatzikos, M., & Ferland, G. J. (2022). Creating a CLOUDY-Compatible Database with CHIANTI Version 10 Data. Astronomy, 1(3), 255-270. https://doi.org/10.3390/astronomy1030015