Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. CMEMS
2.1.2. Buoys
2.2. Statistics
2.3. Offshore Resource Estimates—Energy Density Estimate
3. Results
3.1. Statistical Validation
3.2. Estimate of Energy Density (W/m²)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Hs | Significant Wave Height |
Gw | Gigawatts |
R2 | Coefficient determination |
RMSE | Root Mean Square Error |
MSE | Mean Square Error |
Probability Density Function | |
W. s | Weibull distribution Shape |
W. sc | Weibull Scale |
Med | Mean |
SAR | Synthetic Aperture Radar |
UTC | Coordinated Universal Time |
References
- Adami, V.S.; Júnior, J.A.V.A.; Sellitto, M.A. Regional industrial policy in the wind energy sector: The case of the State of Rio Grande do Sul, Brazil. Energy Policy 2017, 111, 18–27. [Google Scholar] [CrossRef]
- Operador Nacional do Sistema Elétrico do Brasil (ONS). Histórico de Operação. Available online: http://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/ (accessed on 20 June 2020).
- Pryor, S.C.; Barthelmie, R.J. Comparison of potential power production at on and offshore sites. Wind. Energy Int. J. Prog. Appl. Wind. Power Convers. Technol. 2001, 4, 173–181. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). População do Brasil. Available online: https://censo2010.ibge.gov.br/noticias-censo.html (accessed on 30 September 2020).
- Pérez, C.C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef]
- Tuchtenhagen, P.N. Variabilidade do Vento e Potencial Para Energia Eólica Offshore no Litoral Sul do Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2019. [Google Scholar]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy 2014, 134, 57–64. [Google Scholar] [CrossRef]
- Marinha do Brasil (MB). Dados PNBOIA. Available online: https://www.marinha.mil.br/chm/dados-do-goos-brasil/pnboia-mapa (accessed on 1 June 2020).
- Jiang, D.; Zhuang, D.; Huang, Y.; Wang, J.; Fu, J. Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data. Renew. Sustain. Energy Rev. 2013, 24, 142–148. [Google Scholar] [CrossRef]
- Soukissian, T.H.; Papadopoulos, A. Effects of different wind data sources in offshore wind power assessment. Renew. Energy 2015, 77, 101–114. [Google Scholar] [CrossRef]
- Gadad, S.; Deka, P.C. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Appl. Energy 2016, 176, 157–170. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.Y.; Alvarez-Fanjul, E.; Axell, L.; Balmaseda, M.; Breivik, L.A.; Dubois, C. The copernicus marine environment monitoring service ocean state report. J. Oper. Oceanogr. 2016, 9, 235–320. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Pimenta, F.; Kempton, W.; Garvine, R. Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil. Renew. Energy 2008, 33, 2375–2387. [Google Scholar] [CrossRef]
- Ortiz, G.P.; Kampel, M. Potencial de Energia Eólica Offshore na Margem do Brasil; V Simpósio Brasileiro de Oceanografia: Santos, Brasil, 2011. [Google Scholar]
- Silva, G.K.; Santos, A.C.S.; Da Silva, M.V.M.; Brabo Alves, J.M.; Barros, A.C.; Oliveira, C.; Sombra, S.S. Estudo dos Padrões de Ventos Offshore no Litoral do Ceará Utilizando Dados Estimados pelo Produto de Satélites BSW. Rev. Bras. Meteorol. 2017, 32, 679–690. [Google Scholar] [CrossRef]
- Tavares, L.F.; Shadman, M.; Freitas, L.P.; Silva, C.; Landau, L.; Estefen, S.F. Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions. Energy 2020, 196, 117097. [Google Scholar] [CrossRef]
- Aznar, R.; Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Amo-Baladrón, A.; Álvarez-Fanjul, E. Strengths and weaknesses of the CMEMS forecasted and reanalyzed solutions for the Iberia–Biscay–Ireland (IBI) waters. J. Mar. Syst. 2016, 159, 1–14. [Google Scholar] [CrossRef]
- Karagali, I.; Hahmann, A.N.; Badger, M.; Hasager, C.B.; Mann, J. New European wind atlas offshore. J. Phys. Conf. Ser. 2018, 1037, 5–10. [Google Scholar] [CrossRef]
- Mason, E.; Ruiz, S.; Bourdalle-Badie, G.; Reffray, M.; Pascual, A. New insight into 3-D mesoscale eddy properties from CMEMS operational models in the western Mediterranean. Ocean. Sci. 2019, 4, 1111–1131. [Google Scholar] [CrossRef]
- Xie, J.; Raj, R.P.; Bertino, L.; Samuelsen, A.; Wakamatsu, T. Evaluation of Arctic Ocean surface salinities from SMOS and two CMEMS reanalyses against in situ data sets. Ocean. Sci. 2019, 10, 1–33. [Google Scholar]
- Bentamy, A. Product User Manual For Wind product WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006. EU Copernic. Mar. Environ. Monit. Serv. 2018, 1, 26. [Google Scholar]
- Le Traon, P.Y.; Reppucci, A.; Alvarez, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Benkiran, M. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Chune, S.L.; Aouf, L.; Dalphinet, A.; Levier, B.; Drillet, Y. Waverys: A CMEMS global wave reanalysis during the altimetry period. Ocean Dyn. 2021, 71, 357–378. [Google Scholar] [CrossRef]
- Chune, S.L.; Aouf, L.; Bruno, L.; Dalphinet, A. Global High Resolution Production Centre For Wave product GLOBAL_REANALYSIS_WAV_001_032. EU Copernic. Mar. Environ. Monit. Serv. 2020, 1, 48. [Google Scholar]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mitsopoulos, P.; Yin, Y.; Peña, M. SARAL-AltiKa Wind and Significant Wave Height for Offshore Wind Energy Applications in the New England Region. Remote Sens. 2021, 13, 57. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Amsterdam, The Netherland, 2005; p. 676. [Google Scholar]
- Oh, K.Y.; Kim, J.Y.; Lee, J.K.; Ryu, M.S.; Lee, J.S. An assessment of wind energy potential at the demonstration offshore wind farm in Korea. Energy 2012, 46, 555–563. [Google Scholar] [CrossRef]
- Jamil, M.; Parsa, S.; Majidi, M. Wind power statistics and an evaluation of wind energy density. Renew. Energy 1995, 6, 623–628. [Google Scholar] [CrossRef]
- Bentamy, A. Product User Manual for Wind product WIND_GLO_WIND_L4_NRT_OBSERVATIONS_012_004. Change 2016, 1, 18. [Google Scholar]
- Aouf, L. CMEMS quality information document for global ocean waves analysis and forecasting product. Man. CMEMS 2018, 1, 1–27. [Google Scholar]
- Kang, J.; Mao, R.; Chang, Y.; Fu, H. Comparative analysis of significant wave height between a new Southern Ocean buoy and satellite altimeter. Atmos. Ocean. Sci. Lett. 2021, 14, 100044. [Google Scholar] [CrossRef]
- EPE. Energia Eólica Offshore Brasil: Perspectivas e Caminhos Para a Energia Eólica Marítima, 1st ed.; Empresa de Pesquisa Energética: Rio de Janeiro, Brazil, 2021. [Google Scholar]
Buoys | Latitude (South) | Longitude (East) | Height of Anemomenter (m) |
---|---|---|---|
Fortaleza | 3° 12′ 48.96″ | 38° 25′ 57″ | 4.71 |
Recife | 8° 09′ 12.96″ | 34° 33′ 34.2″ | 4.71 |
Porto Seguro | 16° 0′ 2.88″ | 37° 56′ 25.08″ | 4.71 |
Vitória | 19° 55′ 33.96″ | 39° 41′ 28.68″ | 4.71 |
Santos | 25° 26′ 22.2″ | 45° 2.0′ 9.96″ | 4.71 |
Itajaí | 27° 24′ 15.84″ | 47° 15′ 38.16″ | 4.71 |
Rio Grande | 31° 33′ 44.28″ | 49° 50′ 14.28″ | 4.71 |
Fortaleza | Wind Speed | Hs | ||||||
---|---|---|---|---|---|---|---|---|
W. s | W. sc | Med | Std | W. s | W. sc | Med | Std | |
Buoy | 5.00 | 9.69 | 8.90 | 2.04 | 5 | 1.81 | 1.66 | 0.35 |
CMEMS | 5.09 | 8.64 | 7.94 | 1.81 | 5 | 1.81 | 1.68 | 0.30 |
Rio Grande | Wind Speed | Hs | ||||||
---|---|---|---|---|---|---|---|---|
W. s | W. sc | Med | Std | W. s | W. sc | Med | Std | |
Buoy | 2 | 9.30 | 8.30 | 3.64 | 2 | 2.42 | 2.16 | 0.83 |
CMEMS | 2 | 8.94 | 7.95 | 3.15 | 2 | 2.51 | 2.24 | 0.85 |
Location | Buoy | CMEMS |
---|---|---|
Fortaleza | 497 | 352 |
Rio Grande | 526 | 461 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, I.G.F.d.; Gomes, H.B.; Peña, M.; Mitsopoulos, P.; Nova, T.S.V.; Silva, K.M.R.d.; Calheiros, A.J.P. Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment. Wind 2022, 2, 586-598. https://doi.org/10.3390/wind2030031
Freitas IGFd, Gomes HB, Peña M, Mitsopoulos P, Nova TSV, Silva KMRd, Calheiros AJP. Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment. Wind. 2022; 2(3):586-598. https://doi.org/10.3390/wind2030031
Chicago/Turabian StyleFreitas, Ismael Guidson Farias de, Helber Barros Gomes, Malaquias Peña, Panagiotis Mitsopoulos, Thayna Silva Vila Nova, Kécia Maria Roberto da Silva, and Alan James Peixoto Calheiros. 2022. "Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment" Wind 2, no. 3: 586-598. https://doi.org/10.3390/wind2030031
APA StyleFreitas, I. G. F. d., Gomes, H. B., Peña, M., Mitsopoulos, P., Nova, T. S. V., Silva, K. M. R. d., & Calheiros, A. J. P. (2022). Evaluation of Wind and Wave Estimates from CMEMS Reanalysis for Brazil’s Offshore Energy Resource Assessment. Wind, 2(3), 586-598. https://doi.org/10.3390/wind2030031