Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior
Abstract
:1. Introduction
“The undernourishment and malnourishment of convicts is, in fact, one of the worst crimes…criminals might be generated by prison food alone…yet, knowing as we do that it [undernourishment] is perpetrated upon the human being in our prisons, we sit supine and acquiescent, and thereby make the crime our own”.Julian Hawthorne, Banquet of the Damned, 1914
2. Primer on Ultra-Processed Foods
3. Dietary Patterns vs. Individual Nutrients
4. Nutrition and Mental Health—Interventions
5. Experimentation in Correctional Facilities
6. Mechanistic Pathways
7. Microbiome Pathways
8. Where to Next?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawthorne, J. The Subterranean Brotherhood; McBride, Nast and Co.: New York, NY, USA, 1914. [Google Scholar]
- Maller, J.B. Juvenile delinquency in New York City: A summary of a comprehensive report. J. Psychol. 1937, 3, 1–25. [Google Scholar] [CrossRef]
- Addington Bruce, H. To nourish children. The Boston Globe, 26 December 1925; p. 15. [Google Scholar]
- Watson, G.; Comrey, A.L. Nutritional replacement for mental illness. J. Psychol. 1954, 38, 251–264. [Google Scholar] [CrossRef]
- Watson, G. Vitamin deficiencies in mental illness. J. Psychol. 1957, 43, 47–63. [Google Scholar] [CrossRef]
- Logan, A.C.; Schoenthaler, S.J. Nutrition, Behavior, and the Criminal Justice System: What Took so Long? An Interview with Dr. Stephen J. Schoenthaler. Challenges 2023, 14, 37. [Google Scholar] [CrossRef]
- DeAngelis, T. Continuing Education: Nutrition’s role in mental health. Monit. Psychol. 2023, 54, 36–41. [Google Scholar]
- Prescott, S.L.; Logan, A.C.; D’Adamo, C.R.; Holton, K.F.; Lowry, C.A.; Marks, J.; Moodie, R.; Polland, B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. Int. J. Environ. Res. Public Health 2024, 21, 120. [Google Scholar] [CrossRef]
- Harris, J.L.; Taillie, L.S. More than a Nuisance: Implications of Food Marketing for Public Health Efforts to Curb Childhood Obesity. Annu. Rev. Public Health 2023, 45, 213–233. [Google Scholar] [CrossRef]
- Robinson, M. The Food IS the Crime: A Focus on Food as “Food Crime”. Int. J. Crim. Justice Sci. 2022, 17, 167–187. [Google Scholar]
- Robinson, M. Food Crime: An Introduction to Deviance in the Food Industry; Routledge: New York, NY, USA, 2023. [Google Scholar]
- Prescott, S.L.; D’Adamo, C.R.; Holton, K.F.; Ortiz, S.; Overby, N.; Logan, A.C. Beyond Plants: The Ultra-Processing of Global Diets Is Harming the Health of People, Places, and Planet. Int. J. Environ. Res. Public Health 2023, 20, 6461. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A. All the harmful effects of ultra-processed foods are not captured by nutrient profiling. Public Health Nutr. 2009, 12, 1968–1969. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Vignola, E.F.; Nazmi, A.; Freudenberg, N.L. What makes ultra-processed food appealing? A critical scan and conceptual model. World Nutr. 2021, 12, 136–175. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Moubarac, J.C.; Parra, D.C.; Cannon, G.; Monteiro, C.A. Food Classification Systems Based on Food Processing: Significance and Implications for Policies and Actions: A Systematic Literature Review and Assessment. Curr. Obes. Rep. 2014, 3, 256–272. [Google Scholar] [CrossRef]
- Popkin, B.M.; Miles, D.R.; Taillie, L.S.; Dunford, E.K. A policy approach to identifying food and beverage products that are ultra-processed and high in added salt, sugar and saturated fat in the United States: A cross-sectional analysis of packaged foods. Lancet Reg. Health Am. 2024, 32, 100713. [Google Scholar] [CrossRef]
- Levy, R.B.; Barata, M.F.; Leite, M.A.; Andrade, G.C. How and why ultra-processed foods harm human health. Proc. Nutr. Soc. 2024, 83, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Naik, A.; Logan, A.C. Not food: Time to call ultra-processed products by their true name. Gastronomy 2024, 2, 47–56. [Google Scholar] [CrossRef]
- Monteiro, C.A. The big issue is ultra-processing: The price and value of meals. World Nutr. 2011, 2, 271–282. [Google Scholar]
- Monteiro, C.A. Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef]
- Houshialsadat, Z.; Cediel, G.; Sattamini, I.; Scrinis, G.; Machado, P. Ultra-processed foods, dietary diversity and micronutrient intakes in the Australian population. Eur. J. Nutr. 2023, 63, 135–144. [Google Scholar] [CrossRef]
- Neumann, N.J.; Eichner, G.; Fasshauer, M. Flavour, emulsifiers, and colour are the most frequent markers to detect food ultra-processing in a UK food market analysis. Public Health Nutr. 2023, 26, 3303–3310. [Google Scholar] [CrossRef] [PubMed]
- Leitao, A.E.; Roschel, H.; Oliveira-Junior, G.; Genario, R.; Franco, T.; Monteiro, C.A.; Martinez-Steele, E. Association between ultra-processed food and flavonoid intakes in a nationally representative sample of the US population. Br. J. Nutr. 2024, 131, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Brown, J.E.; Hawdon, A.; Faughnan, M.S.; King, L.J.; Millward, J.; Zimmer-Nechemias, L.; Wolfe, B.; Setchell, K.D. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr. 2006, 136, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Visser, A.; Thomas, A. Soya protein products-their processing, functionality, and application aspects. Food Rev. Int. 1987, 3, 1–32. [Google Scholar] [CrossRef]
- Riaz, M.N. Textured soy protein and its uses. Agro Food Ind. Hi Tech 2001, 12, 28–31. [Google Scholar]
- Suksatan, W.; Moradi, S.; Naeini, F.; Bagheri, R.; Mohammadi, H.; Talebi, S.; Mehrabani, S.; Hojjati Kermani, M.A.; Suzuki, K. Ultra-Processed Food Consumption and Adult Mortality Risk: A Systematic Review and Dose-Response Meta-Analysis of 207,291 Participants. Nutrients 2021, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Costanzo, S.; Di Castelnuovo, A.; Persichillo, M.; Magnacca, S.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Ultra-processed food intake and all-cause and cause-specific mortality in individuals with cardiovascular disease: The Moli-sani Study. Eur. Heart J. 2022, 43, 213–224. [Google Scholar] [CrossRef]
- Taneri, P.E.; Wehrli, F.; Roa-Diaz, Z.M.; Itodo, O.A.; Salvador, D.; Raeisi-Dehkordi, H.; Bally, L.; Minder, B.; Kiefte-de Jong, J.C.; Laine, J.E.; et al. Association Between Ultra-Processed Food Intake and All-Cause Mortality: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2022, 191, 1323–1335. [Google Scholar] [CrossRef]
- Orlich, M.J.; Sabate, J.; Mashchak, A.; Fresan, U.; Jaceldo-Siegl, K.; Miles, F.; Fraser, G.E. Ultra-processed food intake and animal-based food intake and mortality in the Adventist Health Study-2. Am. J. Clin. Nutr. 2022, 115, 1589–1601. [Google Scholar] [CrossRef]
- Romero Ferreiro, C.; Martin-Arriscado Arroba, C.; Cancelas Navia, P.; Lora Pablos, D.; Gomez de la Camara, A. Ultra-processed food intake and all-cause mortality: DRECE cohort study. Public Health Nutr. 2021, 25, 1854–1863. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Mohan, V.; Swaminathan, S.; Avezum, A.; Lear, S.A.; Rosengren, A.; Poirier, P.; Lanas, F.; et al. Ultra-processed foods and mortality: Analysis from the Prospective Urban and Rural Epidemiology study. Am. J. Clin. Nutr. 2023, 117, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, S.; Yang, H.; Zhang, Y.; Ma, Y.; Hou, Y.; Zhang, X.; Sun, L.; Borne, Y.; Wang, Y. Association of Ultra-Processed Food Intake with Cardiovascular and Respiratory Disease Multimorbidity: A Prospective Cohort Study. Mol. Nutr. Food Res. 2023, 67, 2200628. [Google Scholar] [CrossRef]
- Esposito, S.; Bonaccio, M.; Ruggiero, E.; Costanzo, S.; Di Castelnuovo, A.; Gialluisi, A.; Esposito, V.; Innocenzi, G.; Paolini, S.; Cerletti, C.; et al. Food processing and risk of central nervous system tumours: A preliminary case-control analysis from the MEditerranean DIet in relation to CancEr of brAin (MEDICEA) study. Clin. Nutr. 2023, 42, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef]
- Gomez-Donoso, C.; Sanchez-Villegas, A.; Martinez-Gonzalez, M.A.; Gea, A.; Mendonca, R.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Julia, C.; Alles, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Hodge, A.M.; O’Neil, A.; Travica, N.; Jacka, F.N.; Rocks, T.; Machado, P.; Forbes, M.; Ashtree, D.N.; et al. High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J. Affect. Disord. 2023, 335, 57–66. [Google Scholar] [CrossRef]
- Lee, S.; Choi, M. Ultra-Processed Food Intakes Are Associated with Depression in the General Population: The Korea National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2169. [Google Scholar] [CrossRef]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Joint association of ultra-processed food and sedentary behavior with anxiety-induced sleep disturbance among Brazilian adolescents. J. Affect. Disord. 2020, 266, 135–142. [Google Scholar] [CrossRef]
- Coletro, H.N.; Mendonca, R.D.; Meireles, A.L.; Machado-Coelho, G.L.L.; Menezes, M.C. Ultra-processed and fresh food consumption and symptoms of anxiety and depression during the COVID-19 pandemic: COVID Inconfidentes. Clin. Nutr. ESPEN 2022, 47, 206–214. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, Y.; Shen, Y. Association of Ultra-processed Food Consumption with Incident Depression and Anxiety: A Population-based Cohort Study. Food Funct. 2023; in press. [Google Scholar]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated With Depressive Symptoms Among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef] [PubMed]
- Samuthpongtorn, C.; Nguyen, L.H.; Okereke, O.I.; Wang, D.D.; Song, M.; Chan, A.T.; Mehta, R.S. Consumption of Ultraprocessed Food and Risk of Depression. JAMA Netw. Open 2023, 6, e2334770. [Google Scholar] [CrossRef]
- Zahedi, H.; Kelishadi, R.; Heshmat, R.; Motlagh, M.E.; Ranjbar, S.H.; Ardalan, G.; Payab, M.; Chinian, M.; Asayesh, H.; Larijani, B.; et al. Association between junk food consumption and mental health in a national sample of Iranian children and adolescents: The CASPIAN-IV study. Nutrition 2014, 30, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, H.; Malek Mohammadi, F.; Karampour, Z.; Amini, S.; Abiri, B.; Sayyah, M. The relationship between history of dietary nutrients intakes and incidence of aggressive behavior in adolescent girls: A case-control study. Clin. Nutr. ESPEN 2021, 43, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Amini, S.; Ehsani, H.; Ehsani, M.; Adineh, P.; Mohammadzadeh, H.; Hashemi, S. Evaluation of dietary food intakes and anthropometric measures in middle-aged men with aggressive symptoms. BMC Nutr. 2023, 9, 75. [Google Scholar] [CrossRef]
- Wu, W.C.; Lin, C.I.; Li, Y.F.; Chang, L.Y.; Chiang, T.L. The mediating effect of dietary patterns on the association between mother’s education level and the physical aggression of five-year-old children: A population-based cohort study. BMC Pediatr. 2020, 20, 221. [Google Scholar] [CrossRef]
- Khayyatzadeh, S.S.; Firouzi, S.; Askari, M.; Mohammadi, F.; Nikbakht-Jam, I.; Ghazimoradi, M.; Mohammadzadeh, M.; Ferns, G.A.; Ghayour-Mobarhan, M. Dietary intake of carotenoids and fiber is inversely associated with aggression score in adolescent girls. Nutr. Health 2019, 25, 203–208. [Google Scholar] [CrossRef]
- Mrug, S.; Jones, L.C.; Elliott, M.N.; Tortolero, S.R.; Peskin, M.F.; Schuster, M.A. Soft Drink Consumption and Mental Health in Adolescents: A Longitudinal Examination. J. Adolesc. Health 2021, 68, 155–160. [Google Scholar] [CrossRef]
- Gketsios, I.; Tsiampalis, T.; Kanellopoulou, A.; Vassilakou, T.; Notara, V.; Antonogeorgos, G.; Rojas-Gil, A.P.; Kornilaki, E.N.; Lagiou, A.; Panagiotakos, D.B.; et al. The Synergetic Effect of Soft Drinks and Sweet/Salty Snacks Consumption and the Moderating Role of Obesity on Preadolescents’ Emotions and Behavior: A School-Based Epidemiological Study. Life 2023, 13, 633. [Google Scholar] [CrossRef]
- Calais-Ferreira, L.; Young, J.T.; Francis, K.; Willoughby, M.; Pearce, L.; Clough, A.; Spittal, M.J.; Brown, A.; Borschmann, R.; Sawyer, S.M.; et al. Non-communicable disease mortality in young people with a history of contact with the youth justice system in Queensland, Australia: A retrospective, population-based cohort study. Lancet Public Health 2023, 8, e600–e609. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 226. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Hall, K.D.; Herrick, K.A.; Reedy, J.; Chung, S.T.; Stagliano, M.; Courville, A.B.; Sinha, R.; Freedman, N.D.; Hong, H.G.; et al. Metabolomic Profiling of an Ultraprocessed Dietary Pattern in a Domiciled Randomized Controlled Crossover Feeding Trial. J. Nutr. 2023, 153, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef]
- Corbin, K.D.; Carnero, E.A.; Dirks, B.; Igudesman, D.; Yi, F.; Marcus, A.; Davis, T.L.; Pratley, R.E.; Rittmann, B.E.; Krajmalnik-Brown, R.; et al. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nat. Commun. 2023, 14, 3161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Yu, G.; Xu, C.; Zhang, D.; Ju, F.; Ni, Y. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMeta 2022, 1, e10. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- LaFata, E.M.; Gearhardt, A.N. Ultra-Processed Food Addiction: An Epidemic? Psychother. Psychosom. 2022, 91, 363–372. [Google Scholar] [CrossRef]
- Schulte, E.M.; Gearhardt, A.N. Development of the Modified Yale Food Addiction Scale Version 2.0. Eur. Eat. Disord. Rev. 2017, 25, 302–308. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Bueno, N.B.; DiFeliceantonio, A.G.; Roberto, C.A.; Jimenez-Murcia, S.; Fernandez-Aranda, F. Social, clinical, and policy implications of ultra-processed food addiction. BMJ 2023, 383, e075354. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.A.; Stratton, M.; L’Insalata, A.M.; Fazzino, T.L. Ultraprocessed, hyper-palatable, and high energy density foods: Prevalence and distinction across 30 years in the United States. Obesity 2024, 32, 166–175. [Google Scholar] [CrossRef]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption among US adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Fazzino, T.L.; Jun, D.; Chollet-Hinton, L.; Bjorlie, K. US tobacco companies selectively disseminated hyper-palatable foods into the US food system: Empirical evidence and current implications. Addiction 2024, 119, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Mesas, A.E.; de Andrade, S.M.; Melanda, F.N.; López-Gil, J.F.; Beneit, N.; Martínez-Vizcaíno, V.; Jiménez-López, E. Is Violence Victimization Associated with the Consumption of Ultra-Processed Food? A Population-Based Study with 96 K Adolescent Students Exploring the Mediating Role of Psychoactive Substance Use. Int. J. Ment. Health Addict. 2024, 1–7. [Google Scholar] [CrossRef]
- Mesas, A.E.; Girotto, E.; Rodrigues, R.; Martínez-Vizcaíno, V.; Jiménez-López, E.; López-Gil, J.F. Ultra-Processed Food Consumption is Associated with Alcoholic Beverage Drinking, Tobacco Smoking, and Illicit Drug Use in Adolescents: A Nationwide Population-Based Study. Int. J. Ment. Health Addict. 2023, 1–24. [Google Scholar] [CrossRef]
- Lesieur, H.R.; Blume, S.B. Pathological gambling, eating disorders, and the psychoactive substance use disorders. J. Addict. Dis. 1993, 12, 89–102. [Google Scholar] [CrossRef]
- Jimenez-Murcia, S.; Granero, R.; Wolz, I.; Bano, M.; Mestre-Bach, G.; Steward, T.; Aguera, Z.; Hinney, A.; Dieguez, C.; Casanueva, F.F.; et al. Food Addiction in Gambling Disorder: Frequency and Clinical Outcomes. Front. Psychol. 2017, 8, 473. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.C.; Pirkle, J.R.A.; Kirkpatrick, K. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats. PLoS ONE 2017, 12, e0180510. [Google Scholar] [CrossRef]
- Tokko, T.; Eensoo, D.; Luht-Kallas, K.; Harro, J. Risk-taking in traffic is associated with unhealthy lifestyle: Contribution of aggressiveness and the serotonin transporter genotype. Neurosci. Appl. 2022, 1, 100110. [Google Scholar] [CrossRef]
- Zhang, X.; Ravichandran, S.; Gee, G.C.; Dong, T.S.; Beltran-Sanchez, H.; Wang, M.C.; Kilpatrick, L.A.; Labus, J.S.; Vaughan, A.; Gupta, A. Social Isolation, Brain Food Cue Processing, Eating Behaviors, and Mental Health Symptoms. JAMA Netw. Open 2024, 7, e244855. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.W.; Parnarouskis, L.; Slotnick, M.J.; Gearhardt, A.N. Food Insecurity and Food Addiction in a Large, National Sample of Lower-Income Adults. Curr. Dev. Nutr. 2023, 7, 102036. [Google Scholar] [CrossRef] [PubMed]
- Moodie, A.R. What Public Health Practitioners Need to Know About Unhealthy Industry Tactics. Am. J. Public Health 2017, 107, 1047–1049. [Google Scholar] [CrossRef]
- Hibbeln, J.R. From homicide to happiness—A commentary on omega-3 fatty acids in human society. Cleave Award Lecture. Nutr. Health 2007, 19, 9–19. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Ferguson, T.A.; Blasbalg, T.L. Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: Opportunities for intervention. Int. Rev. Psychiatry 2006, 18, 107–118. [Google Scholar] [CrossRef]
- Gow, R.V.; Vallee-Tourangeau, F.; Crawford, M.A.; Taylor, E.; Ghebremeskel, K.; Bueno, A.A.; Hibbeln, J.R.; Sumich, A.; Rubia, K. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 411–418. [Google Scholar] [CrossRef]
- Begue, L.; Zaalberg, A.; Shankland, R.; Duke, A.; Jacquet, J.; Kaliman, P.; Pennel, L.; Chanove, M.; Arvers, P.; Bushman, B.J. Omega-3 supplements reduce self-reported physical aggression in healthy adults. Psychiatry Res. 2018, 261, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Fido, D.; Heym, N.; Bloxsom, C.A.; Hunter, K.A.; Gregson, M.; Sumich, A. Don’t slap the fish: The relationship between dietary omega-3 intake and physical aggression is mediated by motor inhibition in response to distressed faces. Personal. Individ. Differ. 2021, 169, 110062. [Google Scholar] [CrossRef]
- Raine, A.; Fung, A.L.C.; Gao, Y.; Lee, T.M.C. Omega-3 supplementation, child antisocial behavior, and psychopathic personality: A randomized, double-blind, placebo-controlled, stratified, parallel group trial. Eur. Child Adolesc. Psychiatry 2021, 30, 303–312. [Google Scholar] [CrossRef]
- Raine, A.; Ang, R.P.; Choy, O.; Hibbeln, J.R.; Ho, R.M.H.; Lim, C.G.; Lim-Ashworth, N.S.J.; Ling, S.; Liu, J.C.J.; Ooi, Y.P.; et al. Omega-3 (omega-3) and social skills interventions for reactive aggression and childhood externalizing behavior problems: A randomized, stratified, double-blind, placebo-controlled, factorial trial. Psychol. Med. 2019, 49, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Hallahan, B.; Hibbeln, J.R.; Davis, J.M.; Garland, M.R. Omega-3 fatty acid supplementation in patients with recurrent self-harm-Single-centre double-blind randomised controlled trial. Br. J. Psychiatry 2007, 190, 118–122. [Google Scholar] [CrossRef]
- Dunn, S.B.; Orchard, T.S.; Andridge, R.; Rymut, S.M.; Slesnick, N.; Hatsu, I.E. Mental health in society’s margins: Poor n-3 PUFA intake and psychological well-being of homeless youth. Br. J. Nutr. 2024, 131, 698–706. [Google Scholar] [CrossRef]
- Cave, C.; Hein, N.; Smith, L.M.; Anderson-Berry, A.; Richter, C.K.; Bisselou, K.S.; Appiah, A.K.; Kris-Etherton, P.; Skulas-Ray, A.C.; Thompson, M.; et al. Omega-3 Long-Chain Polyunsaturated Fatty Acids Intake by Ethnicity, Income, and Education Level in the United States: NHANES 2003-2014. Nutrients 2020, 12, 2045. [Google Scholar] [CrossRef]
- Meyer, B.J.; Byrne, M.K.; Collier, C.; Parletta, N.; Crawford, D.; Winberg, P.C.; Webster, D.; Chapman, K.; Thomas, G.; Dally, J.; et al. Baseline Omega-3 Index Correlates with Aggressive and Attention Deficit Disorder Behaviours in Adult Prisoners. PLoS ONE 2015, 10, e0129984. [Google Scholar] [CrossRef]
- Raine, A.; Brodrick, L. Omega-3 supplementation reduces aggressive behavior: A meta-analytic review of randomized controlled trials. Aggress. Violent Behav. 2024, 78, 101956. [Google Scholar] [CrossRef] [PubMed]
- Walsh, W.J.; Isaacson, H.R.; Rehman, F.; Hall, A. Elevated blood copper/zinc ratios in assaultive young males. Physiol. Behav. 1997, 62, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Bockerman, P.; Bryson, A.; Viinikainen, J.; Viikari, J.; Lehtimaki, T.; Vuori, E.; Keltikangas-Jarvinen, L.; Raitakari, O.; Pehkonen, J. The serum copper/zinc ratio in childhood and educational attainment: A population-based study. J. Public Health 2016, 38, 696–703. [Google Scholar] [CrossRef]
- Tokdemir, M.; Polat, S.A.; Acik, Y.; Gursu, F.; Cikim, G.; Deniz, O. Blood zinc and copper concentrations in criminal and noncriminal schizophrenic men. Arch. Androl. 2003, 49, 365–368. [Google Scholar] [CrossRef]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Roman, J.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugan-Miguelsanz, J.M. Copper and Copper/Zn Ratio in a Series of Children with Chronic Diseases: A Cross-Sectional Study. Nutrients 2021, 13, 3578. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, J.; McGouldrick, S.H.; Raine, A.; Zemel, B.S.; Tucker, K.L.; Liu, J. Lower dietary intake of magnesium is associated with more callous-unemotional traits in children. Nutr. Neurosci. 2022, 25, 2314–2323. [Google Scholar] [CrossRef] [PubMed]
- Choy, O. Nutritional factors associated with aggression. Front. Psychiatry 2023, 14, 1176061. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, G.N.; Sanlier, N. The relationship between nutrition and depression in the life process: A mini-review. Exp. Gerontol. 2023, 172, 112072. [Google Scholar] [CrossRef]
- Katta, N.M.; Blampied, N.M.; Mulder, R.T.; Rucklidge, J.J. Micronutrients absorbed via the oral mucosa reduce irritability and anger but not stress in university students during COVID-19: A randomized placebo-controlled trial. Int. J. Stress Manag. 2023; advance online publication. [Google Scholar] [CrossRef]
- Hambly, J.L.; Francis, K.; Khan, S.; Gibbons, K.S.; Walsh, W.J.; Lambert, B.; Testa, C.; Haywood, A. Micronutrient Therapy for Violent and Aggressive Male Youth: An Open-Label Trial. J. Child. Adolesc. Psychopharmacol. 2017, 27, 823–832. [Google Scholar] [CrossRef]
- Mortazavi, M.; Farzin, D.; Zarhghami, M.; Hosseini, S.H.; Mansoori, P.; Nateghi, G. Efficacy of Zinc Sulfate as an Add-on Therapy to Risperidone Versus Risperidone Alone in Patients With Schizophrenia: A Double-Blind Randomized Placebo-Controlled Trial. Iran. J. Psychiatry Behav. Sci. 2015, 9, e853. [Google Scholar] [CrossRef]
- Qamar, R.; Wang, S.M.; Qureshi, F.M.; LaChance, L.; Kolla, N.J.; Thege, B.K. Nutritional supplementation in the management of childhood/youth aggression: A systematic review. Aggress. Violent Behav. 2023, 71, 101841. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Du, Y. You may be what you eat, so can you be violent due to your food? Eur. J. Biomed. Pharm. Sci. 2019, 6, 20–28. [Google Scholar]
- Raygada, M.; Cho, E.; Hilakivi-Clarke, L. High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings’ aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J. Nutr. 1998, 128, 2505–2511. [Google Scholar] [CrossRef]
- Giriko, C.A.; Andreoli, C.A.; Mennitti, L.V.; Hosoume, L.F.; Souto Tdos, S.; Silva, A.V.; Mendes-da-Silva, C. Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. Int. J. Dev. Neurosci. 2013, 31, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Gawlinska, K.; Gawlinski, D.; Filip, M.; Przegalinski, E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr. Rev. 2021, 79, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Mizera, J.; Pomierny, B.; Sadakierska-Chudy, A.; Bystrowska, B.; Pomierny-Chamiolo, L. Disruption of Glutamate Homeostasis in the Brain of Rat Offspring Induced by Prenatal and Early Postnatal Exposure to Maternal High-Sugar Diet. Nutrients 2022, 14, 2184. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Castellana, F.; Boero, G.; Matera, E.; Colacicco, G.; Piscitelli, P.; Clodoveo, M.L.; Rondanelli, M.; Panza, F.; Lozupone, M.; et al. Processed foods and diet quality in pregnancy may affect child neurodevelopment disorders: A narrative review. Nutr. Neurosci. 2023, 27, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Eliby, D.; Simpson, C.A.; Lawrence, A.S.; Schwartz, O.S.; Haslam, N.; Simmons, J.G. Associations between diet quality and anxiety and depressive disorders: A systematic review. J. Affect. Disord. Rep. 2023, 14, 100629. [Google Scholar] [CrossRef]
- Molendijk, M.L.; Fried, E.I.; Van der Does, W. The SMILES trial: Do undisclosed recruitment practices explain the remarkably large effect? BMC Med. 2018, 16, 243. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Ioannidis, J.P.A. Perspective: Limiting Dependence on Nonrandomized Studies and Improving Randomized Trials in Human Nutrition Research: Why and How. Adv. Nutr. 2018, 9, 367–377. [Google Scholar] [CrossRef]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef]
- Lane, M.; Lotfaliany, M.; Machado, P.; Jacka, F.; Mohebbi, M.; O’Neil, A.; Werneck, A.O.; Monteiro, C.; Loughman, A.; Rocks, T.; et al. Change in Ultra-Processed Food Consumption Moderates Clinical Trial Outcomes in Depression: A Secondary Analysis of the SMILES Randomised Controlled Trial. Preprints 2023, 2023081110. [Google Scholar] [CrossRef]
- Francis, H.M.; Stevenson, R.J.; Chambers, J.R.; Gupta, D.; Newey, B.; Lim, C.K. A brief diet intervention can reduce symptoms of depression in young adults—A randomised controlled trial. PLoS ONE 2019, 14, e0222768. [Google Scholar] [CrossRef]
- Agarwal, U.; Mishra, S.; Xu, J.; Levin, S.; Gonzales, J.; Barnard, N.D. A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. Am. J. Health Promot. 2015, 29, 245–254. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef]
- Bayes, J.; Schloss, J.; Sibbritt, D. The effect of a Mediterranean diet on the symptoms of depression in young males (the “AMMEND: A Mediterranean Diet in MEN with Depression” study): A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Suarez, B.M.; Lahortiga-Ramos, F.; Sayon-Orea, C.; Hernandez-Fleta, J.L.; Gonzalez-Pinto, A.; Molero, P.; Vega-Perez, R.; Sanchez-Villegas, A.; PREDI-DEP investigators. Effect of a dietary intervention based on the Mediterranean diet on the quality of life of patients recovered from depression: Analysis of the PREDIDEP randomized trial. Exp. Gerontol. 2023, 175, 112149. [Google Scholar] [CrossRef]
- McMillan, L.; Owen, L.; Kras, M.; Scholey, A. Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite 2011, 56, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Schoenthaler, S.J. The effect of sugar on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1982, 3, 1–9. [Google Scholar]
- Schoenthaler, S.J. Diet and crime: An empirical examination of the value of nutrition in the control and treatment of incarcerated juvenile offenders. Int. J. Biosoc. Res. 1983, 4, 25–39. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Los Angeles Probation Department diet-behavior program: An empirical analysis of six institutional settings. Int. J. Biosoc. Res. 1983, 5, 88–98. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Alabama diet-behavior program: An empirical evaluation at the Coosa Valley Regional Detention Center. Int. J. Biosoc. Res. 1983, 5, 79–87. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The effects of citrus on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1983, 5, 107–117. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. Diet Crime and Delinquency-A Review of the 1983 and 1984 Studies. Int. J. Biosoc. Res. 1984, 6, 141–153. [Google Scholar]
- Schoenthaler, S.J.; Bier, I.D. Diet and delinquency: Empirical testing of seven theories. Int. J. Biosoc. Res. 1985, 7, 108–131. [Google Scholar] [CrossRef]
- Schoenthaler, S. Nutritional policies and institutional antisocial behavior. Nutr. Today 1985, 20, 16–25. [Google Scholar] [CrossRef]
- Schoenthaler, S.J.; Amos, W.; Doraz, M.A.; Kelly, G.; Muedeking, J.; Wakefield, J. The effect of randomized vitamin-mineral supplementation on violent and non-violent antisocial behavior among incarcerated juveniles. J. Nutr. Environ. Med. 1997, 7, 343–352. [Google Scholar] [CrossRef]
- Schoenthaler, S.; Gast, D.; Giltay, E.J.; Amos, S. The effects of vitamin-mineral supplements on serious rule violations in correctional facilities for young adult male inmates: A ran-domized controlled trial. Crime Delinq. 2023, 69, 822–840. [Google Scholar] [CrossRef]
- Gesch, C.B.; Hammond, S.M.; Hampson, S.E.; Eves, A.; Crowder, M.J. Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Randomised, placebo-controlled trial. Br. J. Psychiatry 2002, 181, 22–28. [Google Scholar] [CrossRef]
- Zaalberg, A.; Nijman, H.; Bulten, E.; Stroosma, L.; van der Staak, C. Effects of nutritional supplements on aggression, rule-breaking, and psychopathology among young adult prisoners. Aggress. Behav. 2010, 36, 117–126. [Google Scholar] [CrossRef] [PubMed]
- de Bles, N.J.; Gast, D.A.A.; van der Slot, A.J.C.; Didden, R.; van Hemert, A.M.; Rius-Ottenheim, N.; Giltay, E.J. Lessons learned from two clinical trials on nutritional supplements to reduce aggressive behaviour. J. Eval. Clin. Pract. 2022, 28, 607–614. [Google Scholar] [CrossRef]
- Meyer, B.J.; Byrne, M.K.; Cortie, C.H.; Parletta, N.; Jones, A.; Eckermann, S.; Butler, T.; Greenberg, D.; Batterham, M.; Fernandez, F.; et al. The effect of omega-3 long chain polyunsaturated fatty acids on aggressive behaviour in adult male prisoners: A structured study protocol for a multi-centre, double-blind, randomised placebo-controlled trial and translation into policy and practice. Trials 2021, 22, 318. [Google Scholar] [CrossRef]
- Raine, A.; Leung, C.C.; Singh, M.; Kaur, J. Omega-3 supplementation in young offenders: A randomized, stratified, double-blind, placebo-controlled, parallel-group trial. J. Exp. Criminol. 2020, 16, 389–405. [Google Scholar] [CrossRef]
- Raine, A.; Choy, O.; Leung, C.C.; Singh, M.; Kaur, J. Omega-3 and vitamin D supplementation to reduce recidivism: A pilot study. J. Exp. Criminol. 2023, 1–12. [Google Scholar] [CrossRef]
- Poulter, M.; Coe, S.; Graham, C.A.-M.; Leach, B.; Tammam, J. A Systematic Review of the effect of Dietary and Nutritional Interventions on the Behaviours and Mental Health of Prisoners. Br. J. Nutr. 2024, 1–32. [Google Scholar] [CrossRef]
- Soble, L.; Stroud, K.; Weinstein, M. Eating behind Bars: Ending the Hidden Punishment of Food in Prison. Impact Justice. 2020. Available online: https://impactjustice.org/impact/food-in-prison/#report (accessed on 5 May 2024).
- Rosenboom, L.M.; Shlafer, R.J.; Stang, J.L.; Harnack, L.J. Evaluation of the Nutritional Quality of Commissary Foods Offered in American Women’s Prisons. J. Correct. Health Care 2018, 24, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Woods-Brown, C.; Hunt, K.; Sweeting, H. Food and the prison environment: A meta-ethnography of global first-hand experiences of food, meals and eating in custody. Health Justice 2023, 11, 23. [Google Scholar] [CrossRef]
- Fennessy, A.; Homer, M.S.; Ensaff, H. Nudging food choice in a prison setting: An investigation using food choice data. J. Hum. Nutr. Diet. 2024, 37, 270–279. [Google Scholar] [CrossRef]
- Fishbein, D. Refined carbohydrate consumption and maladaptive behaviors: An experiment. Int. J. Biosoc. Res. 1981, 2, 21–24. [Google Scholar]
- Cebula, T. Maine Prisons’ Food Program on Track to Become National Model. Portland Press Herald, 18 February 2023. Available online: https://www.pressherald.com/2023/02/18/maine-prisons-food-program-on-track-to-become-national-model/ (accessed on 15 March 2024).
- Hewson, T.; Minchin, M.; Lee, K.; Liu, S.; Wong, E.; Edge, C.; Hard, J.; Forsyth, K.; Senior, J.; Shaw, J. Interventions for the detection, monitoring, and management of chronic non-communicable diseases in the prison population: An international systematic review. BMC Public Health 2024, 24, 292. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.J.; Du, J.C.; Chiou, H.C.; Feng, C.C.; Chung, M.Y.; Yang, W.; Chen, Y.S.; Chien, L.C.; Hwang, B.; Chen, M.L. Sugar-Sweetened Beverage Consumption Is Adversely Associated with Childhood Attention Deficit/Hyperactivity Disorder. Int. J. Environ. Res. Public Health 2016, 13, 678. [Google Scholar] [CrossRef]
- Farsad-Naeimi, A.; Asjodi, F.; Omidian, M.; Askari, M.; Nouri, M.; Pizarro, A.B.; Daneshzad, E. Sugar consumption, sugar sweetened beverages and Attention Deficit Hyperactivity Disorder: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 53, 102512. [Google Scholar] [CrossRef]
- Jansen, E.C.; Miller, A.L.; Lumeng, J.C.; Kaciroti, N.; Brophy Herb, H.E.; Horodynski, M.A.; Contreras, D.; Peterson, K.E. Externalizing behavior is prospectively associated with intake of added sugar and sodium among low socioeconomic status preschoolers in a sex-specific manner. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 135. [Google Scholar] [CrossRef]
- Ginieis, R.; Franz, E.A.; Oey, I.; Peng, M. The “sweet” effect: Comparative assessments of dietary sugars on cognitive performance. Physiol. Behav. 2018, 184, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Park, M.N.; Kim, C.S.; Lee, Y.K.; Choi, E.Y.; Chun, W.Y.; Shin, D.M. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain. Sci. Rep. 2017, 7, 45693. [Google Scholar] [CrossRef] [PubMed]
- Solnick, S.J.; Hemenway, D. The ‘Twinkie Defense’: The relationship between carbonated non-diet soft drinks and violence perpetration among Boston high school students. Inj. Prev. 2012, 18, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Carter, L.M.; van Goozen, S. Confectionery consumption in childhood and adult violence. Br. J. Psychiatry 2009, 195, 366–367. [Google Scholar] [CrossRef]
- Lin, W.T.; Kao, Y.H.; Sothern, M.S.; Seal, D.W.; Lee, C.H.; Lin, H.Y.; Chen, T.; Tseng, T.S. The association between sugar-sweetened beverages intake, body mass index, and inflammation in US adults. Int. J. Public Health 2020, 65, 45–53. [Google Scholar] [CrossRef]
- Li, R.; Zhan, W.; Huang, X.; Liu, Z.; Lv, S.; Wang, J.; Liang, L.; Ma, Y. Association of Dietary Inflammatory Index (DII) and Depressive Disorders. J. Inflamm. Res. 2021, 14, 6959–6973. [Google Scholar] [CrossRef]
- Rycerz, K.; Jaworska-Adamu, J.E. Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathol. 2013, 51, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.L.; Holton, K.F. Effects of a diet low in excitotoxins on PTSD symptoms and related biomarkers. Nutr. Neurosci. 2022, 27, 1–11. [Google Scholar] [CrossRef]
- Brandley, E.T.; Kirkland, A.E.; Baron, M.; Baraniuk, J.N.; Holton, K.F. The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Front. Psychiatry 2022, 13, 926688. [Google Scholar] [CrossRef]
- Holton, K.F.; Taren, D.L.; Thomson, C.A.; Bennett, R.M.; Jones, K.D. The effect of dietary glutamate on fibromyalgia and irritable bowel symptoms. Clin. Exp. Rheumatol. 2012, 30, 10–17. [Google Scholar]
- Kirkland, A.E.; Baron, M.; VanMeter, J.W.; Baraniuk, J.N.; Holton, K.F. The low glutamate diet improves cognitive functioning in veterans with Gulf War Illness and resting-state EEG potentially predicts response. Nutr. Neurosci. 2022, 25, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Langan, M.T.; Kirkland, A.E.; Rice, L.C.; Mucciarone, V.C.; Baraniuk, J.; VanMeter, A.; Holton, K.F. Low glutamate diet improves working memory and contributes to altering BOLD response and functional connectivity within working memory networks in Gulf War Illness. Sci. Rep. 2022, 12, 18004. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F.; Kirkland, A.E.; Baron, M.; Ramachandra, S.S.; Langan, M.T.; Brandley, E.T.; Baraniuk, J.N. The Low Glutamate Diet Effectively Improves Pain and Other Symptoms of Gulf War Illness. Nutrients 2020, 12, 2593. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C. Dietary modifications and fibromyalgia. Complement. Health Pract. Rev. 2003, 8, 234–245. [Google Scholar] [CrossRef]
- Dion-Albert, L.; Bandeira Binder, L.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood-brain barrier: Implications for mental health. Front. Neuroendocrinol. 2022, 65, 100989. [Google Scholar] [CrossRef]
- Sharma, R.P.; Coulombe, R.A., Jr. Effects of repeated doses of aspartame on serotonin and its metabolite in various regions of the mouse brain. Food Chem. Toxicol. 1987, 25, 565–568. [Google Scholar] [CrossRef]
- Kring, J.P. Influence of Reduced Serotonin on Aggression and Emotionality; Emporia State University: Emporia, KS, USA, 1997; Available online: https://dspacep01.emporia.edu/handle/123456789/1468 (accessed on 5 May 2024).
- Logan, A.C.; Nicholson, J.J.; Schoenthaler, S.J.; Prescott, S.L. Neurolaw: Revisiting Huberty v. McDonald’s through the Lens of Nutritional Criminology and Food Crime. Laws 2024, 13, 17. [Google Scholar] [CrossRef]
- Chan, A.; Tchantchou, F.; Graves, V.; Rozen, R.; Shea, T.B. Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: Critical role of S-adenosyl methionine. J. Nutr. Health Aging 2008, 12, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Schoenthaler, S.J.; Prescott, S.L.; Logan, A.C. Homicide or Happiness: Did Folate Fortification and Public Health Campaigns Influence Homicide Rates and the Great American Crime Decline? Nutrients 2024, 16, 1075. [Google Scholar] [CrossRef]
- Ued, F.V.; Mathias, M.G.; Toffano, R.B.D.; Barros, T.T.; Almada, M.; Salomao, R.G.; Coelho-Landell, C.A.; Hillesheim, E.; Camarneiro, J.M.; Camelo-Junior, J.S.; et al. Vitamin B2 and Folate Concentrations are Associated with ARA, EPA and DHA Fatty Acids in Red Blood Cells of Brazilian Children and Adolescents. Nutrients 2019, 11, 2918. [Google Scholar] [CrossRef]
- Ataie-Jafari, A.; Qorbani, M.; Heshmat, R.; Ardalan, G.; Motlagh, M.E.; Asayesh, H.; Arzaghi, S.M.; Tajadini, M.H.; Nejatinamini, S.; Poursafa, P.; et al. The association of vitamin D deficiency with psychiatric distress and violence behaviors in Iranian adolescents: The CASPIAN-III study. J. Diabetes Metab. Disord. 2015, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Choy, O.; Raine, A. Vitamin D sufficiency attenuates the effect of early social adversity on child antisocial behavior. Psychol. Med. 2021, 52, 4106–4115. [Google Scholar] [CrossRef]
- Glabska, D.; Kolota, A.; Lachowicz, K.; Skolmowska, D.; Stachon, M.; Guzek, D. The Influence of Vitamin D Intake and Status on Mental Health in Children: A Systematic Review. Nutrients 2021, 13, 952. [Google Scholar] [CrossRef]
- Ogbu, D.; Xia, E.; Sun, J. Gut instincts: Vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biol. 2020, 10, 200063. [Google Scholar] [CrossRef] [PubMed]
- Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int. J. Mol. Sci. 2019, 20, 4256. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, H.O.; Hersberger, M.; Walitza, S.; Berger, G.E. Disentangling the Molecular Mechanisms of the Antidepressant Activity of Omega-3 Polyunsaturated Fatty Acid: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2021, 22, 4393. [Google Scholar] [CrossRef]
- Borsini, A. Depression: What neuroinflammation has to do with it and how nutrition can play a beneficial role. Psychoneuroendocrinology 2021, 131, 105550. [Google Scholar] [CrossRef]
- Barzilay, R.; Lobel, T.; Krivoy, A.; Shlosberg, D.; Weizman, A.; Katz, N. Elevated C-reactive protein levels in schizophrenia inpatients is associated with aggressive behavior. Eur. Psychiatry 2016, 31, 8–12. [Google Scholar] [CrossRef]
- Das, S.; Deuri, S.K.; Sarmah, A.; Pathak, K.; Baruah, A.; Sengupta, S.; Mehta, S.; Avinash, P.R.; Kalita, K.N.; Hazarika, J. Aggression as an independent entity even in psychosis-the role of inflammatory cytokines. J. Neuroimmunol. 2016, 292, 45–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, W.; Li, H.; Peng, F.; Wang, F.; Li, N.; Xiang, H.; Zhang, Z.; Su, Y.; Huang, Y.; et al. Increased ratio of high sensitivity C-reactive protein to interleukin-10 as a potential peripheral biomarker of schizophrenia and aggression. Int. J. Psychophysiol. 2017, 114, 9–15. [Google Scholar] [CrossRef]
- Balcioglu, Y.H.; Balcioglu, S.S.K.; Oncu, F.; Turkcan, A.; Yorulmaz, A.C. Impulsive and aggressive traits and increased peripheral inflammatory status as psychobiological substrates of homicide behavior in schizophrenia. Eur. J. Psychiatry 2022, 36, 207–214. [Google Scholar] [CrossRef]
- Sırlıer Emir, B.; Yıldız, S.; Kazğan Kılıçaslan, A.; Kurt, O.; Uğur, K.; Tabara, M.F.; Aydın, S. Inflammation Markers in Patients with Bipolar Disorder Who Have Committed Offenses and Their Relationship with Criminal Behavior. Medicina 2023, 59, 1725. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Tasci, G.; Kilic, N.; Karadayi, H.; Ozsoy, F.; Atmaca, M. Examination of the Relationship between Peripheral Inflammation Markers and Impulsivity and Aggression in Schizophrenia Patients Involved and Not Involved in Crime. J. Pers. Med. 2023, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Schweren, L.J.S.; Ter Horst, R.; Bloemendaal, M.; van Rooij, D.; Vasquez, A.A.; Hartman, C.A.; Buitelaar, J.K. Low-grade inflammation as mediator between diet and behavioral disinhibition: A UK Biobank study. Brain Behav. Immun. 2022, 106, 100–110. [Google Scholar] [CrossRef]
- Gutierrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [PubMed]
- Suarez, E.C.; Lewis, J.G.; Kuhn, C. The relation of aggression, hostility, and anger to lipopolysaccharide-stimulated tumor necrosis factor (TNF)-alpha by blood monocytes from normal men. Brain Behav. Immun. 2002, 16, 675–684. [Google Scholar] [CrossRef]
- Takahashi, A.; Flanigan, M.E.; McEwen, B.S.; Russo, S.J. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front. Behav. Neurosci. 2018, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Russo, S.J. Link Between the Immune System and Aggression: The Role of Interleukin 1β in Aggression in Animal Models. In Handbook of Anger, Aggression, and Violence; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–24. [Google Scholar]
- Logan, A.C.; Venket Rao, A.; Irani, D. Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Med. Hypotheses 2003, 60, 915–923. [Google Scholar] [CrossRef]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Logan, A.C. Dysbiotic drift: Mental health, environmental grey space, and microbiota. J. Physiol. Anthropol. 2015, 34, 23. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, W.; Wu, S.; Zheng, H.M.; Li, P.; Sheng, H.F.; Chen, M.X.; Chen, Z.H.; Ji, G.Y.; Zheng, Z.D.; et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 2018, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C.; Bristow, J.; Rozzi, R.; Moodie, R.; Redvers, N.; Haahtela, T.; Warber, S.; Poland, B.; Hancock, T.; et al. Exiting the Anthropocene: Achieving personal and planetary health in the 21st century. Allergy 2022, 77, 3498–3512. [Google Scholar] [CrossRef]
- Bixby, M.; Gennings, C.; Malecki, K.M.C.; Sethi, A.K.; Safdar, N.; Peppard, P.E.; Eggers, S. Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients 2022, 14, 3407. [Google Scholar] [CrossRef]
- Miller, G.E.; Engen, P.A.; Gillevet, P.M.; Shaikh, M.; Sikaroodi, M.; Forsyth, C.B.; Mutlu, E.; Keshavarzian, A. Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS ONE 2016, 11, e0148952. [Google Scholar] [CrossRef]
- Bowyer, R.C.E.; Jackson, M.A.; Le Roy, C.I.; Lochlainn, M.N.; Spector, T.D.; Dowd, J.B.; Steves, C.J. Socioeconomic Status and the Gut Microbiome: A TwinsUK Cohort Study. Microorganisms 2019, 7, 17. [Google Scholar] [CrossRef]
- Lewis, C.R.; Bonham, K.S.; McCann, S.H.; Volpe, A.R.; D’Sa, V.; Naymik, M.; De Both, M.D.; Huentelman, M.J.; Lemery-Chalfant, K.; Highlander, S.K.; et al. Family SES Is Associated with the Gut Microbiome in Infants and Children. Microorganisms 2021, 9, 1608. [Google Scholar] [CrossRef]
- Lapidot, Y.; Reshef, L.; Goldsmith, R.; Na’amnih, W.; Kassem, E.; Ornoy, A.; Gophna, U.; Muhsen, K. The Associations between Diet and Socioeconomic Disparities and the Intestinal Microbiome in Preadolescence. Nutrients 2021, 13, 2645. [Google Scholar] [CrossRef] [PubMed]
- Zuniga-Chaves, I.; Eggers, S.; Kates, A.E.; Safdar, N.; Suen, G.; Malecki, K.M.C. Neighborhood socioeconomic status is associated with low diversity gut microbiomes and multi-drug resistant microorganism colonization. npj Biofilms Microbiomes 2023, 9, 61. [Google Scholar] [CrossRef]
- Bastiaanssen, T.F.S.; Gururajan, A.; van de Wouw, M.; Moloney, G.M.; Ritz, N.L.; Long-Smith, C.M.; Wiley, N.C.; Murphy, A.B.; Lyte, J.M.; Fouhy, F.; et al. Volatility as a Concept to Understand the Impact of Stress on the Microbiome. Psychoneuroendocrinology 2021, 124, 105047. [Google Scholar] [CrossRef]
- Marin, I.A.; Goertz, J.E.; Ren, T.; Rich, S.S.; Onengut-Gumuscu, S.; Farber, E.; Wu, M.; Overall, C.C.; Kipnis, J.; Gaultier, A. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci. Rep. 2017, 7, 43859. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Guo, R.; Ma, Q.; Li, Y.; Wang, W.; Fan, Y.; Ju, Y.; Zhao, B.; Gao, Y.; Qian, L.; et al. Stressful events induce long-term gut microbiota dysbiosis and associated post-traumatic stress symptoms in healthcare workers fighting against COVID-19. J. Affect. Disord. 2022, 303, 187–195. [Google Scholar] [CrossRef]
- Knowles, S.R.; Nelson, E.A.; Palombo, E.A. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: A possible mechanism underlying susceptibility to illness. Biol. Psychol. 2008, 77, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Van de Wiele, T.; Fouhy, F.; O’Mahony, S.; Clarke, G.; Keane, J. Gut microbiome patterns depending on children’s psychosocial stress: Reports versus biomarkers. Brain Behav. Immun. 2019, 80, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Malan-Muller, S.; Valles-Colomer, M.; Foxx, C.L.; Vieira-Silva, S.; van den Heuvel, L.L.; Raes, J.; Seedat, S.; Lowry, C.A.; Hemmings, S.M.J. Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. Eur. Neuropsychopharmacol. 2022, 56, 24–38. [Google Scholar] [CrossRef]
- Ma, L.; Yan, Y.; Webb, R.J.; Li, Y.; Mehrabani, S.; Xin, B.; Sun, X.; Wang, Y.; Mazidi, M. Psychological Stress and Gut Microbiota Composition: A Systematic Review of Human Studies. Neuropsychobiology 2023, 82, 247–262. [Google Scholar] [CrossRef]
- Zeamer, A.L.; Salive, M.C.; An, X.; Beaudoin, F.L.; House, S.L.; Stevens, J.S.; Zeng, D.; Neylan, T.C.; Clifford, G.D.; Linnstaedt, S.D.; et al. Association between microbiome and the development of adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure. Transl. Psychiatry 2023, 13, 354. [Google Scholar] [CrossRef]
- Hegstrand, L.R.; Hine, R.J. Variations of brain histamine levels in germ-free and nephrectomized rats. Neurochem. Res. 1986, 11, 185–191. [Google Scholar] [CrossRef]
- Gaykema, R.P.; Goehler, L.E.; Lyte, M. Brain response to cecal infection with Campylobacter jejuni: Analysis with Fos immunohistochemistry. Brain Behav. Immun. 2004, 18, 238–245. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.R.; Zhang, X.J.; Xu, Z.; Ding, Y.Q.; Ju, G. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J. Gastroenterol. 2002, 8, 540–545. [Google Scholar] [CrossRef]
- Goehler, L.E.; Gaykema, R.P.; Opitz, N.; Reddaway, R.; Badr, N.; Lyte, M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 2005, 19, 334–344. [Google Scholar] [CrossRef]
- Goehler, L.E.; Park, S.M.; Opitz, N.; Lyte, M.; Gaykema, R.P. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 2008, 22, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Maynard, K.R.; Hill, J.L.; Calcaterra, N.E.; Palko, M.E.; Kardian, A.; Paredes, D.; Sukumar, M.; Adler, B.D.; Jimenez, D.V.; Schloesser, R.J.; et al. Functional Role of BDNF Production from Unique Promoters in Aggression and Serotonin Signaling. Neuropsychopharmacology 2016, 41, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- Yochum, C.; Doherty-Lyon, S.; Hoffman, C.; Hossain, M.M.; Zelikoff, J.T.; Richardson, J.R. Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: Role of altered catecholamines and BDNF. Exp. Neurol. 2014, 254, 145–152. [Google Scholar] [CrossRef]
- Ito, W.; Chehab, M.; Thakur, S.; Li, J.; Morozov, A. BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav. 2011, 10, 365–374. [Google Scholar] [CrossRef]
- Naruszewicz, M.; Johansson, M.L.; Zapolska-Downar, D.; Bukowska, H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr. 2002, 76, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Kullisaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 2003, 90, 449–456. [Google Scholar] [CrossRef]
- Katzman, M.A.; Logan, A.C. Quo Vadis, Probiotics? Human Research Supports Further Study of Beneficial Microbes in Mental Health. EBioMedicine 2017, 24, 14–15. [Google Scholar] [CrossRef]
- Logan, A.C.; Jacka, F.N.; Craig, J.M.; Prescott, S.L. The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. Clin. Psychopharmacol. Neurosci. 2016, 14, 131–147. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Donoso, F.; Cryan, J.F.; Olavarria-Ramirez, L.; Nolan, Y.M.; Clarke, G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin. Pharmacol. Ther. 2023, 113, 246–259. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, X.; Yang, Y.; Gu, L.; Liu, L.; Yang, Y.; Zhou, J.; Wu, C.; Jin, F. Marked shifts in gut microbial structure and neurotransmitter metabolism in fresh inmates revealed a close link between gut microbiota and mental health: A case-controlled study. Int. J. Clin. Health Psychol. 2022, 22, 100323. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.C. From Mouse to Man: How the Human Post Mortem Microbiome Relates to Local Area Crime Level. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2022. [Google Scholar]
- Kwiatkowski, C.C. Aggression and the Gut-Brain Axis. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2022. [Google Scholar]
- Zeng, H.; Ishaq, S.L.; Zhao, F.Q.; Wright, A.G. Colonic inflammation accompanies an increase of beta-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 2016, 35, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun. 2020, 88, 308–324. [Google Scholar] [CrossRef]
- Radjabzadeh, D.; Bosch, J.A.; Uitterlinden, A.G.; Zwinderman, A.H.; Ikram, M.A.; van Meurs, J.B.J.; Luik, A.I.; Nieuwdorp, M.; Lok, A.; van Duijn, C.M.; et al. Gut microbiome-wide association study of depressive symptoms. Nat. Commun. 2022, 13, 7128. [Google Scholar] [CrossRef]
- Tcherni-Buzzeo, M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress. Behav. 2023, 49, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Gulledge, L.; Oyebode, D.; Donaldson, J.R. The influence of the microbiome on aggressive behavior: An insight into age-related aggression. FEMS Microbiol. Lett. 2023, 370, fnac114. [Google Scholar] [CrossRef]
- Gato, W.E.; Posick, C.; Williams, A.; Mays, C. Examining the Link Between the Human Microbiome and Antisocial Behavior: Why Criminologists Should Care About Biochemistry, Too. Deviant Behav. 2018, 39, 1191–1201. [Google Scholar] [CrossRef]
- Pedroso, I.; Kumbhare, S.V.; Joshi, B.; Saravanan, S.K.; Mongad, D.S.; Singh-Rambiritch, S.; Uday, T.; Muthukumar, K.M.; Irudayanathan, C.; Reddy-Sinha, C.; et al. Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures. J. Pers. Med. 2022, 12, 1237. [Google Scholar] [CrossRef]
- Zheng, P.; Yang, J.; Li, Y.; Wu, J.; Liang, W.; Yin, B.; Tan, X.; Huang, Y.; Chai, T.; Zhang, H.; et al. Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Adv. Sci. 2020, 7, 1902862. [Google Scholar] [CrossRef]
- Sumich, A.; Heym, N.; Lenzoni, S.; Hunter, K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr. Opin. Behav. Sci. 2022, 44, 101101. [Google Scholar] [CrossRef]
- Johnson, K.V. Gut microbiome composition and diversity are related to human personality traits. Hum. Microb. J. 2020, 15, 100069. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Wang, H.; Luo, J.; Wang, Z.; Chen, G.; Jiang, D.; Cao, R.; Huang, H.; Luo, D.; et al. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int. J. Legal Med. 2021, 135, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, H.; Matsunaga, M.; Ueda, E.; Kajiwara, T.; Takeda, A.K.; Watanabe, S.; Baba, K.; Hagihara, K.; Myowa, M. Altered Gut Microbiota Composition Is Associated with Difficulty in Explicit Emotion Regulation in Young Children. Microorganisms 2023, 11, 2245. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Guimond, A.J.; Tworoger, S.S.; Huang, T.; Chan, A.T.; Liu, Y.Y.; Kubzansky, L.D. Gut feelings: Associations of emotions and emotion regulation with the gut microbiome in women. Psychol. Med. 2023, 53, 7151–7160. [Google Scholar] [CrossRef]
- Aversa, Z.; Atkinson, E.J.; Schafer, M.J.; Theiler, R.N.; Rocca, W.A.; Blaser, M.J.; LeBrasseur, N.K. Association of Infant Antibiotic Exposure With Childhood Health Outcomes. Mayo Clin. Proc. 2021, 96, 66–77. [Google Scholar] [CrossRef]
- Lurie, I.; Yang, Y.X.; Haynes, K.; Mamtani, R.; Boursi, B. Antibiotic exposure and the risk for depression, anxiety, or psychosis: A nested case-control study. J. Clin. Psychiatry 2015, 76, 1522–1528. [Google Scholar] [CrossRef]
- Kohler-Forsberg, O.; Petersen, L.; Gasse, C.; Mortensen, P.B.; Dalsgaard, S.; Yolken, R.H.; Mors, O.; Benros, M.E. A Nationwide Study in Denmark of the Association Between Treated Infections and the Subsequent Risk of Treated Mental Disorders in Children and Adolescents. JAMA Psychiatry 2019, 76, 271–279. [Google Scholar] [CrossRef]
- Leclercq, S.; Mian, F.M.; Stanisz, A.M.; Bindels, L.B.; Cambier, E.; Ben-Amram, H.; Koren, O.; Forsythe, P.; Bienenstock, J. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 2017, 8, 15062. [Google Scholar] [CrossRef]
- Grinberg, M.; Levin, R.; Neuman, H.; Ziv, O.; Turjeman, S.; Gamliel, G.; Nosenko, R.; Koren, O. Antibiotics increase aggression behavior and aggression-related pheromones and receptors in Drosophila melanogaster. iScience 2022, 25, 104371. [Google Scholar] [CrossRef] [PubMed]
- Uzan-Yulzari, A.; Turjeman, S.; <monospace> </monospace>Moadi, L.; Getselter, D.; Rautava, S.; Isolauri, E.; Khatib, S.; Elliott, E.; Koren, O. A gut reaction? The role of the microbiome in aggression. Brain Behav. Immun. 2024, 122, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Tarkhashvili, N. Does poverty increase antibiotic prescribing rates through underlying health conditions? Ecological study using parallel mediation analysis. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e21. [Google Scholar] [CrossRef]
- Fernandes, A.E.; Rosa, P.W.L.; Melo, M.E.; Martins, R.C.R.; Santin, F.G.O.; Moura, A.; Coelho, G.; Sabino, E.C.; Cercato, C.; Mancini, M.C. Differences in the gut microbiota of women according to ultra-processed food consumption. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Song, R.; Liu, Y.; Wu, Z.; Zhang, X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res. Int. 2023, 167, 112730. [Google Scholar] [CrossRef]
- Martinez Leo, E.E.; Segura Campos, M.R. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2020, 71, 110609. [Google Scholar] [CrossRef]
- Atzeni, A.; Martinez, M.A.; Babio, N.; Konstanti, P.; Tinahones, F.J.; Vioque, J.; Corella, D.; Fito, M.; Vidal, J.; Moreno-Indias, I.; et al. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front. Nutr. 2022, 9, 976547. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Milagro, F.I.; Aranaz, P.; Martinez, J.A.; Riezu-Boj, J.I. Gut Microbiota Differences According to Ultra-Processed Food Consumption in a Spanish Population. Nutrients 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Coletro, H.N.; Bressan, J.; Diniz, A.P.; Hermsdorff, H.H.M.; Pimenta, A.M.; Meireles, A.L.; Mendonca, R.D.; Carraro, J.C.C. Habitual polyphenol intake of foods according to NOVA classification: Implications of ultra-processed foods intake (CUME study). Int. J. Food Sci. Nutr. 2023, 74, 338–349. [Google Scholar] [CrossRef]
- Ulaszewska, M.M.; Koutsos, A.; Trost, K.; Stanstrup, J.; Garcia-Aloy, M.; Scholz, M.; Fava, F.; Natella, F.; Scaccini, C.; Vrhovsek, U.; et al. Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan. Eur. J. Nutr. 2020, 59, 3691–3714. [Google Scholar] [CrossRef]
- Fan, J.; Yang, Y.; Ma, C.; Liu, X.; Wang, Y.; Chen, F.; Wang, B.; Bian, X.; Yang, C.; Zhang, N. The effects and cell barrier mechanism of main dietary nutrients on intestinal barrier. Curr. Opin. Food Sci. 2022, 48, 100942. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecien, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wojcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Park, M.; Lee, H.J. Effects of Flavonoid-Rich Orange Juice Intervention on Major Depressive Disorder in Young Adults: A Randomized Controlled Trial. Nutrients 2022, 15, 145. [Google Scholar] [CrossRef]
- Gillies, N.A.; Wilson, B.C.; Miller, J.R.; Roy, N.C.; Scholey, A.; Braakhuis, A.J. Effects of a Flavonoid-Rich Blackcurrant Beverage on Markers of the Gut-Brain Axis in Healthy Females: Secondary Findings From a 4-Week Randomized Crossover Control Trial. Curr. Dev. Nutr. 2024, 8, 102158. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Salbaum, J.M.; Luo, M.; Blanchard, E.t.; Taylor, C.M.; Welsh, D.A.; Berthoud, H.R. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 2015, 77, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhong, Z.; Wang, B.; Xia, X.; Yao, W.; Huang, L.; Wang, Y.; Ding, W. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 2019, 44, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Huang, L.; Zhang, C.; Zhang, L.; Xia, X.; Zhong, Z.; Wang, B.; Wang, Y.; Man Hoi, M.P.; Ding, W.; et al. Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis. Eur. J. Pharmacol. 2021, 908, 174338. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.; Wang, Y.; Sun, A.; Lin, Y.; Jin, Y.; Li, X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019, 22, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Duan, C.; Xia, X.; Wang, H.; Wang, Y.; Zhong, Z.; Wang, B.; Ding, W.; Yang, Y. Commensal microbe-derived propionic acid mediates juvenile social isolation-induced social deficits and anxiety-like behaviors. Brain Res. Bull. 2021, 166, 161–171. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, J.; Erasmus, M.A.; Zhang, H.; Johnson, T.A.; Cheng, H. Cecal microbiota transplantation: Unique influence of cecal microbiota from divergently selected inbred donor lines on cecal microbial profile, serotonergic activity, and aggressive behavior of recipient chickens. J. Anim. Sci. Biotechnol. 2023, 14, 66. [Google Scholar] [CrossRef]
- Schrodt, C.; Mahavni, A.; McNamara, G.P.J.; Tallman, M.D.; Bruger, B.T.; Schwarz, L.; Bhattacharyya, A. The gut microbiome and depression: A review. Nutr. Neurosci. 2023, 26, 953–959. [Google Scholar] [CrossRef]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tomicronth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kan, E.M.; Lu, J.; Cao, Y.; Wong, R.K.; Keshavarzian, A.; Wilder-Smith, C.H. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment. Pharm. Ther. 2013, 37, 799–809. [Google Scholar] [CrossRef]
- Chen, K.; Man, S.; Wang, H.; Gao, C.; Li, X.; Liu, L.; Wang, H.; Wang, Y.; Lu, F. Dysregulation of intestinal flora: Excess prepackaged soluble fibers damage the mucus layer and induce intestinal inflammation. Food Funct. 2022, 13, 8558–8571. [Google Scholar] [CrossRef]
- Liu, F.; Li, P.; Chen, M.; Luo, Y.; Prabhakar, M.; Zheng, H.; He, Y.; Qi, Q.; Long, H.; Zhang, Y.; et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Sci. Rep. 2017, 7, 11789. [Google Scholar] [CrossRef]
- He, Y.; Peng, X.; Liu, Y.; Wu, Q.; Zhou, Q.; Huang, Y.; Liu, S.; Hu, L.; Fang, Z.; Lin, Y.; et al. Long-term maternal intake of inulin exacerbated the intestinal damage and inflammation of offspring rats in a DSS-induced colitis model. Food Funct. 2022, 13, 4047–4060. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Lettink-Wissink, M.L.; Van der Meer, R. Dietary fructooligosaccharides increase intestinal permeability in rats. J. Nutr. 2005, 135, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Brouillet, J.Z.; Boltri, M.; Lengvenyte, A.; Lajnef, M.; Richard, J.R.; Barrau, C.; Tamouza, R. Association of markers of inflammation and intestinal permeability in suicidal patients with major mood disorders. J. Affect. Disord. Rep. 2023, 14, 100624. [Google Scholar] [CrossRef]
- Voigt, R.M.; Zalta, A.K.; Raeisi, S.; Zhang, L.; Brown, J.M.; Forsyth, C.B.; Boley, R.A.; Held, P.; Pollack, M.H.; Keshavarzian, A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 323, G61–G70. [Google Scholar] [CrossRef]
- Asejeje, F.O.; Abiola, M.A.; Adeyemo, O.A.; Ogunro, O.B.; Ajayi, A.M. Exogenous monosodium glutamate exacerbates lipopolysaccharide-induced neurobehavioral deficits, oxidative damage, neuroinflammation, and cholinergic dysfunction in rat brain. Neurosci. Lett. 2024, 825, 137710. [Google Scholar] [CrossRef]
- Xue, F.; He, Z.; Zhuang, D.Z.; Lin, F. The influence of gut microbiota on circulating inflammatory cytokines and host: A Mendelian randomization study with meta-analysis. Life Sci. 2023, 332, 122105. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, T.; He, L.; Fu, J.Y.; Deng, H.X.; Xue, X.L.; Chen, B.T. Bacterial Translocation Associates With Aggression in Schizophrenia Inpatients. Front. Syst. Neurosci. 2021, 15, 704069. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; He, L.; Wang, C.; Zhang, T.; Guo, H.; Zhang, H.; Song, Y.; Chen, B. Altered gut microbiota and its metabolites correlate with plasma cytokines in schizophrenia inpatients with aggression. BMC Psychiatry 2022, 22, 629. [Google Scholar] [CrossRef] [PubMed]
- Akdis, C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 2021, 21, 739–751. [Google Scholar] [CrossRef]
- Martel, J.; Chang, S.H.; Ko, Y.F.; Hwang, T.L.; Young, J.D.; Ojcius, D.M. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 2022, 33, 247–265. [Google Scholar] [CrossRef]
- Naimi, S.; Viennois, E.; Gewirtz, A.T.; Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021, 9, 66. [Google Scholar] [CrossRef]
- Feng, Z.M.; Li, T.J.; Wu, L.; Xiao, D.F.; Blachier, F.; Yin, Y.L. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs. Obes. Facts 2015, 8, 87–100. [Google Scholar] [CrossRef]
- Nahok, K.; Phetcharaburanin, J.; Li, J.V.; Silsirivanit, A.; Thanan, R.; Boonnate, P.; Joonhuathon, J.; Sharma, A.; Anutrakulchai, S.; Selmi, C.; et al. Monosodium Glutamate Induces Changes in Hepatic and Renal Metabolic Profiles and Gut Microbiome of Wistar Rats. Nutrients 2021, 13, 1865. [Google Scholar] [CrossRef]
- Kyaw, T.S.; Sukmak, M.; Nahok, K.; Sharma, A.; Silsirivanit, A.; Lert-Itthiporn, W.; Sansurin, N.; Senthong, V.; Anutrakulchai, S.; Sangkhamanon, S.; et al. Monosodium glutamate consumption reduces the renal excretion of trimethylamine N-oxide and the abundance of Akkermansia muciniphila in the gut. Biochem. Biophys. Res. Commun. 2022, 630, 158–166. [Google Scholar] [CrossRef]
- Arnold, A. Consumption of Dietary Emulsifiers Increases Sensitivity to Social Stress in Mice: A Potential Role for the COX Molecular Pathway. Ph.D. Thesis, Georgia State University, Atlanta, GA, USA, 2022. [Google Scholar] [CrossRef]
- Arnold, A.R.; Chassaing, B.; Pearce, B.D.; Huhman, K.L. Dietary emulsifier consumption alters gene expression in the amygdala and paraventricular nucleus of the hypothalamus in mice. Sci. Rep. 2022, 12, 9146. [Google Scholar] [CrossRef]
- Mila-Guasch, M.; Ramirez, S.; Llana, S.R.; Fos-Domenech, J.; Dropmann, L.M.; Pozo, M.; Eyre, E.; Gomez-Valades, A.G.; Obri, A.; Haddad-Tovolli, R.; et al. Maternal emulsifier consumption programs offspring metabolic and neuropsychological health in mice. PLoS Biol. 2023, 21, e3002171. [Google Scholar] [CrossRef] [PubMed]
- Buzescu, A.; Cristea, A.N.; Avram, L.; Chririta, C. The addictive behaviour induced by food monosodium glutamate. Experimental study. Rom. J. Med. Pract. 2013, 8, 229–233. [Google Scholar]
- Onaolapo, O.J.; Aremu, O.S.; Onaolapo, A.Y. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 677–689. [Google Scholar] [CrossRef]
- Hartley, D.E.; Edwards, J.E.; Spiller, C.E.; Alom, N.; Tucci, S.; Seth, P.; Forsling, M.L.; File, S.E. The soya isoflavone content of rat diet can increase anxiety and stress hormone release in the male rat. Psychopharmacology 2003, 167, 46–53. [Google Scholar] [CrossRef]
- Marshall, S.A.; Rinker, J.A.; Harrison, L.K.; Fletcher, C.A.; Herfel, T.M.; Thiele, T.E. Assessment of the Effects of 6 Standard Rodent Diets on Binge-Like and Voluntary Ethanol Consumption in Male C57BL/6J Mice. Alcohol. Clin. Exp. Res. 2015, 39, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Quadir, S.G.; Rohl, C.D.; Zeabi, A.; Moore, C.F.; Cottone, P.; Sabino, V. Effect of different standard rodent diets on ethanol intake and associated allodynia in male mice. Alcohol 2020, 87, 17–23. [Google Scholar] [CrossRef]
- Davies, S.; Nelson, D.E.; Shrestha, S.; Savage, D.D. Impact of two different rodent diets on maternal ethanol consumption, serum ethanol concentration and pregnancy outcome measures. Alcohol 2023, 111, 39–49. [Google Scholar] [CrossRef]
- Zaparte, A.; Dore, E.; White, S.; Paliarin, F.; Gabriel, C.; Copenhaver, K.; Basavanhalli, S.; Garcia, E.; Vaddavalli, R.; Luo, M.; et al. Standard rodent diets differentially impact alcohol consumption and preference and gut microbiome diversity. Front. Neurosci. 2024, 18, 1383181. [Google Scholar] [CrossRef]
- Patisaul, H.B.; Bateman, H.L. Neonatal exposure to endocrine active compounds or an ERbeta agonist increases adult anxiety and aggression in gonadally intact male rats. Horm. Behav. 2008, 53, 580–588. [Google Scholar] [CrossRef]
- Neugebauer, R.; Hoek, H.W.; Susser, E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 1999, 282, 455–462. [Google Scholar] [CrossRef]
- Tien, J.; Lewis, G.D.; Liu, J. Prenatal risk factors for internalizing and externalizing problems in childhood. World J. Pediatr. 2020, 16, 341–355. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B.; Zhang, J.; Dong, J.; Ma, J.; Zhang, Y.; Jin, K.; Lu, J. Effect of prebiotics, probiotics, synbiotics on depression: Results from a meta-analysis. BMC Psychiatry 2023, 23, 477. [Google Scholar] [CrossRef]
- Zhu, R.; Fang, Y.; Li, H.; Liu, Y.; Wei, J.; Zhang, S.; Wang, L.; Fan, R.; Wang, L.; Li, S.; et al. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front. Immunol. 2023, 14, 1158137. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Matis, L.; Alexandru, B.A.; Fodor, R.; Daina, L.G.; Ghitea, T.C.; Vlad, S. Effect of Probiotic Therapy on Neuropsychiatric Manifestations in Children with Multiple Neurotransmitter Disorders: A Study. Biomedicines 2023, 11, 2643. [Google Scholar] [CrossRef]
- Arteaga-Henriquez, G.; Rosales-Ortiz, S.K.; Arias-Vasquez, A.; Bitter, I.; Ginsberg, Y.; Ibanez-Jimenez, P.; Kilencz, T.; Lavebratt, C.; Matura, S.; Reif, A.; et al. Treating impulsivity with probiotics in adults (PROBIA): Study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020, 21, 161. [Google Scholar] [CrossRef] [PubMed]
- Erdman, S.E. Oxytocin and the microbiome. Curr. Opin. Endocr. Metab. Res. 2021, 19, 8–14. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Yang Sr, X.; Xu, L.; Becker, B.; Sahakian, B.J.; Robbins, T.W.; Kendrick, K.M. Oxytocin, but not vasopressin, decreases willingness to harm others by promoting moral emotions of guilt and shame. Mol. Psychiatry 2024. [Google Scholar] [CrossRef]
- Isolauri, E.; Salminen, S.; Rautava, S. Early Microbe Contact and Obesity Risk: Evidence Of Causality? J. Pediatr. Gastroenterol. Nutr. 2016, 63 (Suppl. S1), S3–S5. [Google Scholar] [CrossRef]
- Rautava, S. Early-Life Antibiotic Exposure, the Gut Microbiome, and Disease in Later Life; Academic Press: Cambridge, MA, USA, 2021; pp. 135–153. [Google Scholar]
- Morales-Torres, R.; Carrasco-Gubernatis, C.; Grasso-Cladera, A.; Cosmelli, D.; Parada, F.J.; Palacios-Garcia, I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023, 15, 1706. [Google Scholar] [CrossRef]
- Berding, K.; Bastiaanssen, T.F.S.; Moloney, G.M.; Boscaini, S.; Strain, C.R.; Anesi, A.; Long-Smith, C.; Mattivi, F.; Stanton, C.; Clarke, G.; et al. Feed your microbes to deal with stress: A psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 2023, 28, 601–610. [Google Scholar] [CrossRef]
- Magzal, F.; Turroni, S.; Fabbrini, M.; Barone, M.; Vitman Schorr, A.; Ofran, A.; Tamir, S. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Front. Nutr. 2023, 10, 1234549. [Google Scholar] [CrossRef]
- Leung, C.W.; Fulay, A.P.; Parnarouskis, L.; Martinez-Steele, E.; Gearhardt, A.N.; Wolfson, J.A. Food insecurity and ultra-processed food consumption: The modifying role of participation in the Supplemental Nutrition Assistance Program (SNAP). Am. J. Clin. Nutr. 2022, 116, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Parnarouskis, L.; Gearhardt, A.N.; Mason, A.E.; Adler, N.E.; Laraia, B.A.; Epel, E.S.; Leung, C.W. Association of Food Insecurity and Food Addiction Symptoms: A Secondary Analysis of Two Samples of Low-Income Female Adults. J. Acad. Nutr. Diet. 2022, 122, 1885–1892. [Google Scholar] [CrossRef]
- Caughron, J.R. An Examination of Food Insecurity and Its Impact on Violent Crime in American Communities. Master’s Thesis, Clemson University, Clemson, SC, USA, 2016. [Google Scholar]
- Ali, A.; Broome, J.; Tatum, D.; Fleckman, J.; Theall, K.; Chaparro, M.P.; Duchesne, J.; Taghavi, S. The association between food insecurity and gun violence in a major metropolitan city. J. Trauma Acute Care Surg. 2022, 93, 91–97. [Google Scholar] [CrossRef]
- Finnerty, S. An Analysis of the Association between Food Insecurity and Violent Crime in Georgia in 2020. Master’s Thesis, Georgia State University, Atlanta, GA, USA, 2023. [Google Scholar] [CrossRef]
- Helton, J.J.; Jackson, D.B.; Boutwell, B.B.; Vaughn, M.G. Household Food Insecurity and Parent-to-Child Aggression. Child Maltreat. 2019, 24, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Gundersen, C.; Windsor, L. Community Food Insecurity and Child Maltreatment Reports: County-Level Analysis of U.S. National Data From 2009 to 2018. J. Interpers. Violence 2023, 38, NP262–NP287. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Gundersen, C.; Windsor, L. Community food insecurity predicts child maltreatment report rates across Illinois zip codes, 2011–2018. Ann. Epidemiol. 2022, 73, 30–37. [Google Scholar] [CrossRef]
- Nordgren, T.M.; Lyden, E.; Anderson-Berry, A.; Hanson, C. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency? Nutrients 2017, 9, 197. [Google Scholar] [CrossRef]
- Dunn, C.G.; Gao, K.J.; Soto, M.J.; Bleich, S.N. Disparities in Adult Fast-Food Consumption in the U.S. by Race and Ethnicity, National Health and Nutrition Examination Survey 2017–2018. Am. J. Prev. Med. 2021, 61, e197–e201. [Google Scholar] [CrossRef]
- Nicklett, E.J.; Szanton, S.; Sun, K.; Ferrucci, L.; Fried, L.P.; Guralnik, J.M.; Semba, R.D. Neighborhood socioeconomic status is associated with serum carotenoid concentrations in older, community-dwelling women. J. Nutr. 2011, 141, 284–289. [Google Scholar] [CrossRef]
- Stimpson, J.P.; Nash, A.C.; Ju, H.; Eschbach, K. Neighborhood Deprivation is associated with lower levels of serum carotenoids among adults participating in the Third National Health and Nutrition Examination Survey. J. Am. Diet. Assoc. 2007, 107, 1895–1902. [Google Scholar] [CrossRef]
- Tanprasertsuk, J.; Mohn, E.S.; Matthan, N.R.; Lichtenstein, A.H.; Barger, K.; Vishwanathan, R.; Johnson, M.A.; Poon, L.W.; Johnson, E.J. Serum Carotenoids, Tocopherols, Total n-3 Polyunsaturated Fatty Acids, and n-6/n-3 Polyunsaturated Fatty Acid Ratio Reflect Brain Concentrations in a Cohort of Centenarians. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.; Park, C.G.; Eldeirawi, K. Relationship of serum carotenoid concentrations with allostatic load as a measure of chronic stress among middle-aged adults in the USA. Public Health Nutr. 2015, 18, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Danziger, S.; Levav, J.; Avnaim-Pesso, L. Extraneous factors in judicial decisions. Proc. Natl. Acad. Sci. USA 2011, 108, 6889–6892. [Google Scholar] [CrossRef]
- Danziger, S.; Levav, J.; Avnaim-Pesso, L. Reply to Weinshall-Margel and Shapard: Extraneous factors in judicial decisions persist. Proc. Natl. Acad. Sci. USA 2011, 108, E834. [Google Scholar] [CrossRef]
- Hemrajani, R.; Hobert, T. The Effects of Decision Fatigue on Judicial Behavior: A Study of Arkansas Traffic Court Outcomes. J. Law Court. 2024, 1–9. [Google Scholar] [CrossRef]
- Torres, L.C.; Williams, J.H. Tired Judges? An Examination of the Effect of Decision Fatigue in Bail Proceedings. Crim. Justice Behav. 2022, 49, 1233–1251. [Google Scholar] [CrossRef]
- Priel, D. Law is what the judge had for breakfast: A brief history of an unpalatable idea. Buffalo Law Rev. 2020, 68, 899. [Google Scholar]
- Tampubolon, M.; Situmeang, T.; Saragih, P. Judicial breakfast as an external factor in judicial decision making in courts. F1000Research 2023, 12, 9. [Google Scholar] [CrossRef]
- Strang, S.; Hoeber, C.; Uhl, O.; Koletzko, B.; Munte, T.F.; Lehnert, H.; Dolan, R.J.; Schmid, S.M.; Park, S.Q. Impact of nutrition on social decision making. Proc. Natl. Acad. Sci. USA 2017, 114, 6510–6514. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Artigas, S.O.; Ulrich, A.; Tardu, J.; Mohr, P.N.C.; Wilms, B.; Koletzko, B.; Schmid, S.M.; Park, S.Q. Eating to dare—Nutrition impacts human risky decision and related brain function. Neuroimage 2021, 233, 117951. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Mialon, M.; Serodio, P.; Crosbie, E.; Teicholz, N.; Naik, A.; Carriedo, A. Conflicts of interest for members of the U.S. 2020 Dietary Guidelines Advisory Committee. Public Health Nutr. 2022, 27, e69. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; D’Adamo, C.R.; Prescott, S.L. The Founder: Dispositional Greed, Showbiz, and the Commercial Determinants of Health. Int. J. Environ. Res. Public Health 2023, 20, 5616. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; D’Adamo, C.R.; Pizzorno, J.E.; Prescott, S.L. “Food faddists and pseudoscientists!”: Reflections on the history of resistance to ultra-processed foods. Explore 2023, 20, 470–476. [Google Scholar] [CrossRef]
- Naik, A.; Faircloth, T.J.; Dreger, C.; Adler, S. Corporate Capture of FAO: Industry’s Deepening Influence on Global Food Governance; Corporate Accountability: Boston, MA, USA, 2022. [Google Scholar]
- Slater, S.; Lawrence, M.; Wood, B.; Serodio, P.; Baker, P. Corporate interest groups and their implications for global food governance: Mapping and analysing the global corporate influence network of the transnational ultra-processed food industry. Glob. Health 2024, 20, 16. [Google Scholar] [CrossRef]
- Mialon, M.; Naik, A. A discussion of stronger public policies to protect and promote healthy diets: What can the US learn from other countries? World Nutr. 2023, 14, 86–99. [Google Scholar] [CrossRef]
- Nelson, D.H.; Prescott, S.L.; Logan, A.C.; Bland, J.S. Clinical Ecology—Transforming 21st-Century Medicine with Planetary Health in Mind. Challenges 2019, 10, 15. [Google Scholar] [CrossRef]
- Lacy-Nichols, J.; Nandi, S.; Mialon, M.; McCambridge, J.; Lee, K.; Jones, A.; Gilmore, A.B.; Galea, S.; de Lacy-Vawdon, C.; de Carvalho, C.M.P.; et al. Conceptualising commercial entities in public health: Beyond unhealthy commodities and transnational corporations. Lancet 2023, 401, 1214–1228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescott, S.L.; Logan, A.C.; LaFata, E.M.; Naik, A.; Nelson, D.H.; Robinson, M.B.; Soble, L. Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior. Dietetics 2024, 3, 318-345. https://doi.org/10.3390/dietetics3030025
Prescott SL, Logan AC, LaFata EM, Naik A, Nelson DH, Robinson MB, Soble L. Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior. Dietetics. 2024; 3(3):318-345. https://doi.org/10.3390/dietetics3030025
Chicago/Turabian StylePrescott, Susan L., Alan C. Logan, Erica M. LaFata, Ashka Naik, David H. Nelson, Matthew B. Robinson, and Leslie Soble. 2024. "Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior" Dietetics 3, no. 3: 318-345. https://doi.org/10.3390/dietetics3030025
APA StylePrescott, S. L., Logan, A. C., LaFata, E. M., Naik, A., Nelson, D. H., Robinson, M. B., & Soble, L. (2024). Crime and Nourishment: A Narrative Review Examining Ultra-Processed Foods, Brain, and Behavior. Dietetics, 3(3), 318-345. https://doi.org/10.3390/dietetics3030025