Perilla Oil, An Omega-3 Unsaturated Fatty Acid-Rich Oil, Enhances Diversity of Gut Microbiota and May Relieve Constipation in Sedentary Healthy Female: A Nonrandomized Placebo-Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Design
2.3. Gut Microbiota
2.4. Constipation Score
2.5. Urinary Biochemical Index
2.6. Perilla Oil Supplementation and Dietary Assessment
2.7. Subjective Condition
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Gut Microbiota
3.3. Constipation Score
3.4. Urinary Biochemical Index
3.5. Perilla Oil Supplementation and Nutrient Intake
3.6. Subjective Condition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 108, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, F.; Van Sinderen, D.; O’Toole, P.W.; Stanton, C. Feeding the microbiota: Transducer of nutrient signals for the host. Gut 2017, 66, 1709–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020, 11, 5206. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Molecular Sciences Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef] [Green Version]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018, 67, 1974–1983. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.Q.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012, 483, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, A.; Nemoto, K.; Sugita, M. Effect of 8-week intake of the omega-3 fatty acid-rich perilla oil on the gut function and as a fuel source for female athletes: A randomised trial. Br. J. Nutr. 2022, 129, 981–991. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Hossain, S.; Ito, T.; Wakatsuki, H.; Tanabe, Y.; Ohno, M.; Kato, S.; Yamashita, K.; Shido, O. Perilla seed oil enhances cognitive function and mental health in healthy elderly japanese individuals by enhancing the biological antioxidant potential. Foods 2021, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Tantipaiboonwong, P.; Chaiwangyen, W.; Suttajit, M.; Kangwan, N.; Kaowinn, S.; Khanaree, C.; Punfa, W.; Pintha, K. Molecular mechanism of antioxidant and anti-inflammatory effects of omega-3 fatty acids in perilla seed oil and rosmarinic acid rich fraction extracted from perilla seed meal on TNF-α induced A549 lung adenocarcinoma cells. Molecules 2021, 26, 6757. [Google Scholar] [CrossRef]
- Paschos, G.K.; Magkos, F.; Panagiotakos, D.B.; Votteas, V.; Zampelas, A. Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 2007, 61, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Reiner, M.F.; Stivala, S.; Limacher, A.; Bonetti, N.R.; Méan, M.; Egloff, M.; Rodondi, N.; Aujesky, D.; von Schacky, C.; Lüscher, T.F.; et al. Omega-3 fatty acids predict recurrent venous thromboembolism or total mortality in elderly patients with acute venous thromboembolism. J. Thromb. Haemost. 2017, 15, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: Present, past and future. Expert Rev. Clin. Pharmacol. 2017, 10, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107, S171–S184. [Google Scholar] [CrossRef] [Green Version]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef]
- Bosman, E.S.; Albert, A.Y.; Lui, H.; Dutz, J.P.; Vallance, B.A. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome. Front. Microbiol. 2019, 10, 2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewers, M.E.; Lowe, N.K. A critical review of visual analogue scales in the measurement of clinical phenomena. Res. Nurs. Health 1990, 13, 227–236. [Google Scholar] [CrossRef]
- Kim, S.W.; Suda, W.; Kim, S.; Oshima, K.; Fukuda, S.; Ohno, H.; Morita, H.; Hattori, M. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013, 20, 241–253. [Google Scholar] [CrossRef]
- Agachan, F.; Chen, T.; Pfeifer, J.; Reissman, P.; Wexner, S.D. A constipation scoring system to simplify evaluation and management of constipated patients. Dis. Colon Rectum 1996, 39, 681–685. [Google Scholar] [CrossRef]
- Kasai, H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. 1997, 387, 147–163. [Google Scholar] [CrossRef]
- Ikee, R.; Sasaki, N.; Yasuda, T.; Fukazawa, S. Chronic kidney disease, gut dysbiosis, and constipation: A burdensome triplet. Microorganisms 2020, 8, 1862. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [CrossRef] [Green Version]
- Chassard, C.; Dapoigny, M.; Scott, K.P.; Crouzet, L.; Del’Homme, C.; Marquet, P.; Martin, J.C.; Pickering, G.; Ardid, D.; Eschalier, A.; et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment. Pharmacol. Ther. 2012, 35, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Yajima, T. Effect of Sodium Propionate on the Contractile Response of the Rat Ileum In Situ. Jpn. J. Pharmacol. 1984, 35, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grider, J.R.; Piland, B.E. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am. J. Physiol.-Gastrointest Liver Physiol. 2007, 292, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Brinkworth, G.D.; Noakes, M.; Clifton, P.M.; Bird, A.R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 2009, 101, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Everhart, J.E.; Liang, V.; Go, W.; Johannes, R.S.; Fitzsimmons, S.C.; Roth, H.P.; White, L.R. A Longitudinal Survey of Self-Reported Bowel Habits in the United States. Dig. Dis. Sci. 1989, 34, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Harari, D.; Gurwitz, J.H.; Avorn, J.; Bohn, R.; Minaker, K.L. Bowel Habit in Relation to Age and Gender: Findings From the National Health Interview Survey and Clinical Implications. Arch. Intern. Med. 1996, 156, 315–320. [Google Scholar] [CrossRef]
- Piers, L.S.; Walker, K.Z.; Stoney, R.M.; Soares, M.J.; O’Dea, K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br. J. Nutr. 2003, 90, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Delpino, F.M.; Figueiredo, L.M.; da Silva, B.G.C. Effects of omega-3 supplementation on body weight and body fat mass: A systematic review. Clin. Nutr. ESPEN 2021, 44, 122–129. [Google Scholar] [CrossRef] [PubMed]
Energy and Nutrients | Perilla Oil Jelly | Placebo Jelly | |
---|---|---|---|
(20 g/One Portion) | (20 g/One Portion) | ||
Energy (kJ) ((kcal)) | 9 (38) | 3 (12) | |
Protein (g) | 0 | 0 | |
Fat (g) | 3 | 0 | |
Omega-3 | α-linolenic acid | 1.9 | 0 |
Omega-6 | Linoleic acid | 0.5 | 0 |
Omega-9 | Oleic acid | 0.4 | 0 |
Others | 0.3 | 0 | |
Carbohydrate (g) | 2.8 | 3.3 | |
Salt (g) | 0.1 | 0.1 |
Physical Characteristics | OIL | PLA | ||||
---|---|---|---|---|---|---|
Pre | Post | Change | Pre | Post | Change | |
Body weight (kg) | 57.5 ± 2.7 | 58.0 ± 2.6 | 0.5 ± 0.3 | 58.3 ± 3.0 | 58.9 ± 2.9 | 0.6 ± 0.3 |
BMI (kg/m2) | 22.1 ± 0.8 | 22.3 ± 0.7 | 0.2 ± 0.1 | 22.4 ± 1.0 | 22.6 ± 0.9 | 0.2 ± 0.1 |
Body fat (%) | 28.8 ± 6.1 | 28.9 ± 6.3 | 0.1 ± 0.3 | 29.8 ± 2.4 | 30.6 ± 2.3 | 0.8 ± 0.3 * |
OIL | PLA | ||||
---|---|---|---|---|---|
Level | Bacteria | Pre | Post | Pre | Post |
Family | Bacteroidaceae | 30.4 ± 7.3 | 22.7 ± 5.6 | 23.1 ± 3.7 | 18.8 ± 3.7 |
Lachnospiraceae | 12.8 ± 1.8 | 16.7 ± 2.2 | 20.1 ± 2.5 | 15.1 ± 1.7 * | |
Bifidobacteriaceae | 13.7 ± 6.6 | 10.2 ± 3.6 | 2.5 ± 1.1 | 6.3 ± 1.9 * | |
Clostridiaceae | 0.9 ± 0.3 | 2.4 ± 0.5 § | 2.7 ± 0.9 | 4.3 ± 1.3 | |
Genus | Bacteroides | 29.9 ± 7.4 | 21.5 ± 5.5 | 22.7 ± 3.7 | 18.3 ± 3.6 |
Faecalibacterium | 17.6 ± 3.3 | 16.0 ± 2.8 | 14.4 ± 3.6 | 21.3 ± 5.0 | |
Eubacterium | 4.7 ± 0.9 | 6.6 ± 1.9 | 7.3 ± 2.0 | 7.0 ± 2.3 | |
Lactobacillus | 0.4 ± 0.1 | 0.7 ± 0.4 | 1.0 ± 0.3 | 0.7 ± 0.2 | |
Prevotella | 0.2 ± 0.1 | 1.3 ± 1.2 | 4.2 ± 4.0 | 0.04 ± 0.04 | |
Streptococcus | 0.9 ± 0.6 | 2.0 ± 0.9 | 2.9 ± 0.9 | 3.3 ± 2.4 |
Energy and Nutrients | OIL | PLA |
---|---|---|
Energy (kJ/d) ((kcal/d)) | 428 ± 5.3 (1790 ± 113) | 473 ± 5.5 (1979 ± 105) |
Protein (g/d) | 70.1 ± 5.0 | 74.5 ± 5.0 |
Fat (g/d) | 67.1 ± 6.3 | 68.0 ± 4.8 |
n-3 polyunsaturated fatty acids (g/d) | 1.8 ± 0.3 | 2.7 ± 0.4 |
n-6 polyunsaturated fatty acids (g/d) | 11.5 ± 0.9 | 11.0 ± 1.3 |
Carbohydrate (g/d) | 204.4 ± 16.3 | 254.1 ± 25.0 |
Total dietary fiber (g/d) | 13.6 ± 1.3 | 17.2 ± 2.0 |
Potassium (mg/d) | 2485.4 ± 256.5 | 2881.0 ± 224.7 |
Calcium (mg/d) | 462.2 ± 41.8 | 423.0 ± 48.43 |
Magnesium (mg/d) | 264.4 ± 32.1 | 284.9 ± 27.4 |
Iron (mg/d) | 7.4 ± 0.9 | 8.3 ± 0.5 |
Zinc (mg/d) | 8.5 ± 0.9 | 8.3 ± 0.5 |
Vitamin A (µg/d) | 498 ± 67 | 658 ± 124 |
Vitamin D (µg/d) | 3.8 ± 1.3 | 6.1 ± 1.0 |
Vitamin E (mg/d) | 6.6 ± 0.7 | 8.2 ± 0.7 |
Vitamin B1 (mg/d) | 0.9 ± 0.1 | 1.0 ± 0.1 |
Vitamin B2 (mg/d) | 1.1 ± 0.1 | 1.2 ± 0.1 |
Folic acid (µg/d) | 272.4 ± 27.1 | 305.0 ± 30.2 |
Vitamin C (mg/d) | 71.5 ± 6.2 | 77.5 ± 11.0 |
Salt (g/d) | 9.2 ± 0.5 | 8.7 ± 0.5 |
Subjective Condition | OIL | PLA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | 1 wk | 2 wk | 3 wk | 4 wk | 5 wk | 6 wk | 7 wk | Post | Pre | 1 wk | 2 wk | 3 wk | 4 wk | 5 wk | 6 wk | 7 wk | Post | |
Fatigue | 55.8 ± 6.6 | 54.0 ± 6.3 | 62.0 ± 7.4 | 57.4 ± 8.3 | 56.6 ± 8.4 | 53.8 ± 6.1 | 58.9 ± 8.9 | 58.5 ± 8.0 | 57.8 ± 7.5 | 50.9 ± 9.0 | 47.3 ± 10.3 | 56.5 ± 8.8 | 50.4 ± 9.6 | 47.6 ± 7.5 | 53.5 ± 8.1 | 53.4 ± 7.5 | 57.8 ± 7.1 | 57.9 ± 8.2 |
Sleep quality | 58.1 ± 9.3 | 61.8 ± 4.8 | 60.9 ± 8.6 | 61.8 ± 8.2 | 65.4 ± 6.5 | 64.9 ± 6.6 | 55.9 ± 9.3 | 59.3 ± 7.3 | 63.4 ± 8.8 | 53.1 ± 8.6 | 55.3 ± 9.3 | 56.4 ± 9.6 | 61.3 ± 7.2 | 56.4 ± 8.4 | 58.5 ± 8.6 | 57.1 ± 7.9 | 65.3 ± 7.8 | 57.5 ± 7.3 |
Appetite | 67.6 ± 6.6 | 67.0 ± 6.8 | 68.8 ± 6.9 | 63.0 ± 6.2 | 69.0 ± 8.4 | 65.1 ± 7.6 | 68.6 ± 7.6 | 66.6 ± 6.8 | 65.5 ± 7.3 | 67.0 ± 8.3 | 67.0 ± 8.4 | 68.4 ± 8.7 | 66.3 ± 8.7 | 63.7 ± 8.0 | 60.9 ± 7.6 | 68.7 ± 7.7 | 70.4 ± 7.2 | 68.4 ± 7.8 |
Psychological distress | 56.3 ± 10.1 | 53.9 ± 7.4 | 58.4 ± 8.8 | 56.4 ± 10.3 | 56.1 ± 8.0 | 58.0 ± 8.2 | 60.4 ± 8.9 | 63.5 ± 8.4 | 63.4 ± 8.2 | 64.3 ± 7.4 | 50.3 ± 9.0 | 55.1 ± 8.9 | 54.1 ± 8.3 | 53.1 ± 6.8 | 56.5 ± 7.4 | 64.8 ± 6.4 | 61.1 ± 6.3 | 57.4 ± 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamura, A.; Sugita, M. Perilla Oil, An Omega-3 Unsaturated Fatty Acid-Rich Oil, Enhances Diversity of Gut Microbiota and May Relieve Constipation in Sedentary Healthy Female: A Nonrandomized Placebo-Controlled Pilot Study. Dietetics 2023, 2, 191-202. https://doi.org/10.3390/dietetics2020015
Kawamura A, Sugita M. Perilla Oil, An Omega-3 Unsaturated Fatty Acid-Rich Oil, Enhances Diversity of Gut Microbiota and May Relieve Constipation in Sedentary Healthy Female: A Nonrandomized Placebo-Controlled Pilot Study. Dietetics. 2023; 2(2):191-202. https://doi.org/10.3390/dietetics2020015
Chicago/Turabian StyleKawamura, Aki, and Masaaki Sugita. 2023. "Perilla Oil, An Omega-3 Unsaturated Fatty Acid-Rich Oil, Enhances Diversity of Gut Microbiota and May Relieve Constipation in Sedentary Healthy Female: A Nonrandomized Placebo-Controlled Pilot Study" Dietetics 2, no. 2: 191-202. https://doi.org/10.3390/dietetics2020015
APA StyleKawamura, A., & Sugita, M. (2023). Perilla Oil, An Omega-3 Unsaturated Fatty Acid-Rich Oil, Enhances Diversity of Gut Microbiota and May Relieve Constipation in Sedentary Healthy Female: A Nonrandomized Placebo-Controlled Pilot Study. Dietetics, 2(2), 191-202. https://doi.org/10.3390/dietetics2020015