Feasibility of Using the Brazilian Version of the GloboDiet Software to Collect Dietary Intake Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Aspects
2.3. Procedure
2.3.1. Recruitment
2.3.2. Data Collection
2.4. Statistical Analyses
3. Results
3.1. Adherence Process of the Participants in the Study
3.2. Duration of the Interviews for the First and Second Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2012; ISBN 9780199754038. [Google Scholar]
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 5–48. [Google Scholar]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeing, H. Nutritional Epidemiology: New Perspectives for Understanding the Diet-Disease Relationship? Eur. J. Clin. Nutr. 2013, 67, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, L.S.; Potischman, N.; Kipnis, V.; Midthune, D.; Schatzkin, A.; Thompson, F.E.; Troiano, R.P.; Prentice, R.; Patterson, R.; Carroll, R.; et al. A Comparison of Two Dietary Instruments for Evaluating the Fat–Breast Cancer Relationship. Int. J. Epidemiol. 2006, 35, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocké, M.C.; Niekerk, E.M.; van Rossum, C.; Bellemans, M.; de Maeyer, M.; et al. The Standardized Computerized 24-h Dietary Recall Method EPIC-Soft Adapted for Pan-European Dietary Monitoring. Eur. J. Clin. Nutr. 2011, 65, S5–S15. [Google Scholar] [CrossRef] [Green Version]
- Slimani, N.; Deharveng, G.; Charrondière, R.U.; van Kappel, A.L.; Ocké, M.C.; Welch, A.; Lagiou, A.; van Liere, M.; Agudo, A.; Pala, V.; et al. Structure of the Standardized Computerized 24-h Diet Recall Interview Used as Reference Method in the 22 Centers Participating in the EPIC Project. Comput. Methods Programs Biomed. 1999, 58, 251–266. [Google Scholar] [CrossRef]
- Slimani, N.; Ferrari, P.; Ocké, M.; Welch, A.; Boeing, H.; van Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-Hour Diet Recall Calibration Method Used in the European Prospective Investigation into Cancer and Nutrition (EPIC): General Concepts and Preliminary Results. Eur. J. Clin. Nutr. 2000, 54, 900–917. [Google Scholar] [CrossRef]
- Slimani, N.; Bingham, S.; Runswick, S.; Ferrari, P.; Day, N.E.; Welch, A.A.; Key, T.J.; Miller, A.B.; Boeing, H.; Sieri, S.; et al. Group Level Validation of Protein Intakes Estimated by 24-Hour Diet Recall and Dietary Questionnaires against 24-Hour Urinary Nitrogen in the European Prospective Investigation into Cancer and Nutrition (EPIC) Calibration Study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 784–795. [Google Scholar]
- Bel-Serrat, S.; Knaze, V.; Nicolas, G.; Marchioni, D.M.; Steluti, J.; Mendes, A.; Crispim, S.P.; Fisberg, R.M.; Pereira, R.A.; Araujo, M.C.; et al. Adapting the Standardised Computer- and Interview-Based 24 h Dietary Recall Method (GloboDiet) for Dietary Monitoring in Latin America. Public Health Nutr. 2017, 20, 2847–2858. [Google Scholar] [CrossRef]
- Park, M.K.; Park, J.Y.; Nicolas, G.; Paik, H.Y.; Kim, J.; Slimani, N. Adapting a Standardised International 24 h Dietary Recall Methodology (GloboDiet Software) for Research and Dietary Surveillance in Korea. Br. J. Nutr. 2015, 113, 1810–1818. [Google Scholar] [CrossRef] [Green Version]
- Aglago, E.K.; Landais, E.; Nicolas, G.; Margetts, B.; Leclercq, C.; Allemand, P.; Aderibigbe, O.; Agueh, V.D.; Amuna, P.; Annor, G.A.; et al. Evaluation of the International Standardized 24-h Dietary Recall Methodology (GloboDiet) for Potential Application in Research and Surveillance within African Settings. Glob. Health 2017, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Steluti, J.; Crispim, S.P.; Araujo, M.C.; Peralta, A.M.; Pereira, R.A.; Sichieri, R.; Yokoo, E.M.; Marchioni, D.M. Technology in Health: Brazilian Version of the GloboDiet Program for Dietary Intake Assessment in Epidemiological Studies. Rev. Bras Epidemiol. 2020, 23. [Google Scholar] [CrossRef]
- Bowen, D.J.; Kreuter, M.; Spring, B.; Cofta-Woerpel, L.; Linnan, L.; Weiner, D.; Bakken, S.; Kaplan, C.P.; Squiers, L.; Fabrizio, C.; et al. How We Design Feasibility Studies. Am. J. Prev. Med. 2009, 36, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.I.; Duncan, B.B.; Mill, J.G.; Lotufo, P.A.; Chor, D.; Barreto, S.M.; Aquino, E.M.; Passos, V.M.A.; Matos, S.M.; del Carmen B Molina, M.; et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int. J. Epidemiol. 2015, 44, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Aquino, E.M.L.; Barreto, S.M.; Bensenor, I.M.; Carvalho, M.S.; Chor, D.; Duncan, B.B.; Lotufo, P.A.; Mill, J.G.; Molina, M.D.C.; Mota, E.L.A.; et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and Design. Am. J. Epidemiol. 2012, 175, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.d.C.B.; de Faria, C.P.; Cardoso, L.d.O.; Drehmer, M.; Velasquez-Meléndez, J.G.; Gomes, A.L.C.; Melere, C.; Diniz, M.d.F.H.S.; Sichieri, R.; Benseñor, I.J.M. Diet Assessment in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Development of a Food Frequency Questionnaire. Rev. Nutr. 2013, 26, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.d.C.B.; Benseñor, I.M.; Cardoso, L.d.O.; Velasquez-Melendez, G.; Drehmer, M.; Pereira, T.S.S.; de Faria, C.P.; Melere, C.; Manato, L.; Gomes, A.L.C.; et al. Reproducibility and Relative Validity of the Food Frequency Questionnaire Used in the ELSA-Brasil. Cad. Saúde Pública 2013, 29, 379–389. [Google Scholar] [CrossRef]
- Lotufo, P.A. Setting up the Longitudinal Study for Adult Health (ELSA-Brasil). Rev. Saude Publica 2013, 47, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Brustad, M.; Skeie, G.; Braaten, T.; Slimani, N.; Lund, E. Comparison of Telephone vs Face-to-Face Interviews in the Assessment of Dietary Intake by the 24 h Recall EPIC SOFT Program—The Norwegian Calibration Study. Eur. J. Clin. Nutr. 2003, 57, 107–113. [Google Scholar] [CrossRef] [Green Version]
- DeBiasse, M.A.; Bowen, D.J.; Quatromoni, P.A.; Quinn, E.; Quintiliani, L.M. Feasibility and Acceptability of Dietary Intake Assessment Via 24-Hour Recall and Food Frequency Questionnaire among Women with Low Socioeconomic Status. J. Acad. Nutr. Diet. 2018, 118, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.P.; Snipes, S.A.; King, D.W.; Torres-Vigil, I.; Goldberg, D.S.; Weinberg, A.D. Disparate Inclusion of Older Adults in Clinical Trials: Priorities and Opportunities for Policy and Practice Change. Am. J. Public Health 2010, 100, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Areán, P.A.; Alvidrez, J.; Nery, R.; Estes, C.; Linkins, K. Recruitment and Retention of Older Minorities in Mental Health Services Research. Gerontologist 2003, 43, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocké, M.C.; Slimani, N.; Brants, H.; Buurma-Rethans, E.; Casagrande, C.; Nicolas, G.; Dofkova, M.; le Donne, C.; Freisling, H.; Geelen, A.; et al. Potential and Requirements for a Standardized Pan-European Food Consumption Survey Using the EPIC-Soft Software. Eur. J. Clin. Nutr. 2011, 65, S48–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huybrechts, I.; Casagrande, C.; Nicolas, G.; Geelen, A.; Crispim, S.P.; de Keyzer, W.; Freisling, H.; de Henauw, S.; de Maeyer, M.; Krems, C.; et al. Inventory of Experiences from National/Regional Dietary Monitoring Surveys Using EPIC-Soft. Eur. J. Clin. Nutr. 2011, 65, S16–S28. [Google Scholar] [CrossRef] [Green Version]
- Slimani, N.; Kaaks, R.; Ferrari, P.; Casagrande, C.; Clavel-Chapelon, F.; Lotze, G.; Kroke, A.; Trichopoulos, D.; Trichopoulou, A.; Lauria, C.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC) Calibration Study: Rationale, Design and Population Characteristics. Public Health Nutr. 2002, 5, 1125–1145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Geelen, A.; Boshuizen, H.C.; Ferreira, J.; Ocké, M.C. Importance of Details in Food Descriptions in Estimating Population Nutrient Intake Distributions. Nutr. J. 2019, 18, 17. [Google Scholar] [CrossRef]
- Canesqui, A.M.; Garcia, R.W.D. (Eds.) Antropologia e Nutrição: Um Diálogo Possível; Editora FIOCRUZ: Rio de Janeiro, Brazil, 2005; ISBN 9788575413876. [Google Scholar]
- De Vries, J.H.M.; de Groot, L.C.P.G.M.; van Staveren, W.A. Dietary Assessment in Elderly People: Experiences Gained from Studies in the Netherlands. Eur. J. Clin. Nutr. 2009, 63, S69–S74. [Google Scholar] [CrossRef]
- Campos, M.T.F.d.S.; Monteiro, J.B.R.; de Castro Ornelas, A.P.R. Factors That Affect the Aged People Food Intake e a Nutrição Do Idoso. Rev. Nutr. 2000, 13, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social Desirability Bias in Dietary Self-Report May Compromise the Validity of Dietary Intake Measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
- Avelino, G.F.; Previdelli, Á.N.; de Castro, M.A.; Marchioni, D.M.L.; Fisberg, R.M. Underreporting of Energy Intake and Associated Factors in a Population-Based Study. Cad. Saúde Pública 2014, 30, 663–668. [Google Scholar] [CrossRef]
- Andrade, G.R.G.; Marchioni, D.M.L. Manual Para Avaliação do Consumo Alimentar em Estudos Epidemiológicos com o Software GloboDiet; Universidade de São Paulo, Faculdade de Saúde Pública: São Paulo, Brazil, 2021; ISBN 9786588304037. [Google Scholar]
Interview Status | 1st Contact (n = 3520) | 2nd Contact (n = 501) | 3rd Contact (n = 66) | 4th Contact (n = 12) | Total * (n = 4099) |
---|---|---|---|---|---|
Refused | 166 (4.7) | 27 (5.4) | - | - | 193 (4.7) |
Carried out | 2584 (73.5) | 284 (56.8) | 39 (59.1) | 6 (50.0) | 2913 (71.1) |
Rescheduled | 178 (5.0) | 27 (5.4) | 5 (7.6) | - | 210 (5.1) |
Absence | 592 (16.8) | 162 (32.4) | 22 (33.3) | 6 (50.0) | 782 (19.1) |
First 24H-DR (n = 3520) | ||||||
---|---|---|---|---|---|---|
Gender | Age | |||||
Final Participant Status | Men (n = 1543) | Women (n = 1977) | p-Value | Adults (n = 1969) | Older Adults (n = 1551) | p-Value |
Non-responder ** | 182 (11.9) | 232 (11.7) | 0.293 | 187 (9.5) | 227 (14.6) | |
Responders | 1266 (82.0) | 1647 (83.3) | 1712 (87.0) | 1201 (77.4) | <0.001 | |
Refusing | 95 (6.1) | 98 (5.0) | 70 (3.5) | 123 (8.0) | ||
Second 24H-DR (n = 1585) | ||||||
Final Participant Status | Men (n = 697) | Women (n = 888) | p-Value | Adults (n = 801) | Older Adults (n = 784) | p-Value |
Non-responder ** | 197 (28.2) | 287 (32.1) | 0.281 | 171 (21.2) | 313 (39.4) | |
Responders | 491 (70.4) | 593 (66.9) | 625 (78.1) | 459 (58.6) | <0.001 | |
Refusing | 9 (1.4) | 8 (1.0) | 5 (0.7) | 12 (1.6) |
Interview Status | 1st Contact (n = 1585) | 2nd Contact (n = 387) | 3rd Contact (n = 126) | 4th Contact (n = 41) | 5th Contact (n = 19) | Total * (n = 2158) |
---|---|---|---|---|---|---|
Answered call | 1.338 (84.4) | 317 (81.9) | 92 (73.0) | 31 (75.6) | 15 (79.0) | 1793 (83.1) |
Refused | 12 (0.8) | 3 (0.8) | 2 (1.6) | - | - | 17 (0.8) |
Carried out | 829 (52.3) | 183 (47.3) | 49 (38.9) | 11 (26.8) | 12 (63.1) | 1.084 (50.2) |
Rescheduled | 190 (12.0) | 55 (14.2) | 14 (11.1) | 8 (19.6) | - | 267 (12.4) |
Technical issues | 35 (2.2) | 14 (3.6) | 4 (3.2) | - | 1 (5.4) | 54 (2.5) |
Unavailability | 272 (17.1) | 62 (16.0) | 23 (18.2) | 12 (29.2) | 2 (10.5) | 371 (17.2) |
Missed call | 247 (15.6) | 70 (18.1) | 34 (27.0) | 10 (24.4) | 4 (21.0) | 365 (16.9) |
Stages of the Interview | First 24H-DR (n = 2913) | Second 24H-DR (n = 1084) |
---|---|---|
Duration (minutes) * | Duration (minutes) * | |
General information | 3.4 (2.8–4.9) | 3.6 (2.1–6.5) |
Quick list | 4.8 (3.6–6.4) | 5.2 (4.0–7.0) |
Description and quantification | 20.9 (15.3–28.8) | 23.9 (16.5–34.1) |
Full interview | 30.7 (23.4–40.7) | 35.3 (25.3–49.7) |
First 24H-DR (n = 3520) | ||||||
---|---|---|---|---|---|---|
Gender | Age | |||||
Final Status of the Interview | Men (n = 1266) | Women (n = 1647) | p-Value | Adults (n = 1712) | Older Adults (n = 1201) | p-Value |
General information | 3.3 (2.3–4.6) | 3.5 (2.4–5.2) | <0.001 | 3.3 (2.3–4.7) | 3.6 (2.6–5.2) | <0.001 |
Quick list | 4.7 (3.5–6.2) | 4.9 (3.7–6.4) | 0.074 | 4.7 (3.6–6.2) | 5.0 (3.7–6.6) | 0.001 |
Description and quantification | 20.2 (14.8–27.9) | 21.5 (15.7–29.3) | 0.002 | 20.6 (15.1–27.9) | 21.6 (15.4–29.6) | 0.026 |
Full interview | 29.5 (22.5–39.7) | 31.5 (24.1–41.6) | <0.001 | 29.7 (23.1–39.6) | 32.0 (23.8–42.4) | <0.001 |
Second 24H-DR (n = 1585) | ||||||
Final Status of the Interview | Men (n = 491) | Women (n = 593) | p-Value | Adults (n = 625) | Older Adults (n = 459) | p-Value |
General information | 3.5 (2.1–6.3) | 3.6 (2.1–6.6) | 0.895 | 3.3 (2.0–6.5) | 3.7 (2.4–6.5) | 0.011 |
Quick list | 5.1 (3.9–7.0) | 5.3 (4.0–7.0) | 0.450 | 5.2 (4.0–6.9) | 5.2 (4.0–7.0) | 0.957 |
Description and quantification | 23.2 (16.4–34.0) | 25.1 (16.6–34.1) | 0.503 | 23.7 (16.4–33.4) | 24.3 (16.6–35.4) | 0.483 |
Full interview | 34.8 (25.5–50.7) | 36.0 (25.2–47.7) | 0.943 | 35.3 (25.4–48.8) | 35.3 (25.3–50.8) | 0.459 |
Stages of the Interview | First 24H-DR Duration in Minutes * | p-Value | Second 24H-DR Duration in Minutes * | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Underweight (n = 118) | Normal Weight ** (n = 924) | Overweight and Obesity ** (n = 1852) | Underweight (n = 50) | Normal Weight **(n = 346) | Overweight and Obesity ** (n = 688) | |||
General information | 3.5 (2.7–5.2) | 3.4 (2.4–4.9) | 3.4 (2.3–4.9) | 0.497 | 3.4 (2.7–8.9) | 3.6 (2.1–6.3) | 3.5 (2.1–6.4) | 0.945 |
Quick list | 5.3 (4.3–6.7) | 5.1 (3.9–6.8) | 4.7 (3.5–6.2) | <0.001 | 6.0 (4.3–8.5) | 5.4 (4.2–7.0) | 5.1 (3.8–6.8) | 0.004 |
Description and quantification | 22.5 (16.0–30.5) | 21.8 (16.0–29.7) | 20.6 (15.0–28.3) | 0.013 | 27.5 (17.9–43.3) | 25.2 (16.3–35.5) | 23.1 (16.5–32.1) | 0.067 |
Full interview | 33.0 (25.0–42.5) | 32.0 (24.0–41.6) | 30.0 (22.9–40.2) | 0.003 | 40.5 (26.1–62.2) | 36.8 (24.8–52.4) | 34.3 (25.5–48.0) | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, G.R.G.; Cacau, L.T.; De Carli, E.; Lotufo, P.A.; Benseñor, I.M.; Marchioni, D.M. Feasibility of Using the Brazilian Version of the GloboDiet Software to Collect Dietary Intake Data. Dietetics 2023, 2, 45-54. https://doi.org/10.3390/dietetics2010004
Andrade GRG, Cacau LT, De Carli E, Lotufo PA, Benseñor IM, Marchioni DM. Feasibility of Using the Brazilian Version of the GloboDiet Software to Collect Dietary Intake Data. Dietetics. 2023; 2(1):45-54. https://doi.org/10.3390/dietetics2010004
Chicago/Turabian StyleAndrade, Gustavo Rosa Gentil, Leandro Teixeira Cacau, Eduardo De Carli, Paulo Andrade Lotufo, Isabela Martins Benseñor, and Dirce Maria Marchioni. 2023. "Feasibility of Using the Brazilian Version of the GloboDiet Software to Collect Dietary Intake Data" Dietetics 2, no. 1: 45-54. https://doi.org/10.3390/dietetics2010004
APA StyleAndrade, G. R. G., Cacau, L. T., De Carli, E., Lotufo, P. A., Benseñor, I. M., & Marchioni, D. M. (2023). Feasibility of Using the Brazilian Version of the GloboDiet Software to Collect Dietary Intake Data. Dietetics, 2(1), 45-54. https://doi.org/10.3390/dietetics2010004