Geodesic Least Squares: Robust Regression Using Information Geometry †
Abstract
:1. Introduction
2. Geodesic Least Squares Regression
3. GLS for Energy Confinement Scaling in Tokamaks
3.1. Energy Confinement in Magnetic Confinement Fusion
3.2. Regression Results
3.3. Visualizations
4. GLS for Tully–Fisher Scaling in Astrophysics
4.1. The Baryonic Tully–Fisher Relation
4.2. Regression Results
4.3. Visualization
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verdoolaege, G. A New Robust Regression Method Based on Minimization of Geodesic Distances on a Probabilistic Manifold: Application to Power Laws. Entropy 2015, 17, 4602–4626. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Nielsen, F. An elementrary introduction to information geometry. Entropy 2020, 22, 1100. [Google Scholar] [CrossRef] [PubMed]
- Burbea, J.; Rao, C. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. J. Multivar. Anal. 1982, 12, 575–596. [Google Scholar] [CrossRef]
- Von Toussaint, U. General Hyperplane Prior Distributions Based on Geometric Invariances for Bayesian Multivariate Linear Regression. Entropy 2015, 17, 3898–3912. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J. Generalized Linear Models; Chapman & Hall/CRC: Boca Raton, FL, USA, 1989. [Google Scholar]
- Rao, C.; Nagaoka, H. Differential metrics in probability spaces. In Differential Geometry in Statistical Inference; Amari, S.I., Barndorff-Nielsen, O.E., Kass, R.E., Lauritzen, S.L., Rao, C.R., Eds.; Institute of Mathematical Statistics: Hayward, CA, USA, 1987; Chapter 5; pp. 217–240. [Google Scholar]
- Beran, R. Minimum Hellinger distance estimates for parametric models. Ann. Stat. 1977, 5, 445–463. [Google Scholar] [CrossRef]
- Pak, R. Minimum Hellinger distance estimation in simple regression models; distribution and efficiency. Stat. Probab. Lett. 1996, 26, 263–269. [Google Scholar] [CrossRef]
- Freidberg, J. Plasma Physics and Fusion Energy; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- ITER Physics Expert Group on Confinement and Transport; ITER Physics Expert Group on Confinement Modelling and Database; ITER Physics Basis Editors. Chapter 2: Plasma confinement and transport. Nucl. Fusion 1999, 39, 2175–2249. [Google Scholar] [CrossRef]
- H-Mode Database Working Group. International Global H-Mode Confinement Database. 2021. Available online: https://osf.io/drwcq (accessed on 12 July 2023).
- Verdoolaege, G.; Kaye, S.M.; Angioni, C.; Kardaun, O.J.W.F.; Maslov, M.; Romanelli, M.; Ryter, F.; Thomsen, K.; the ASDEX Upgrade Team; the EUROfusion MST1 Team. The updated ITPA global H-mode confinement database: Description and analysis. Nucl. Fusion 2021, 61, 076006. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformations vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.; Weisen, H.; Hillesheim, J.C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I.S.; Corrigan, G.; Flanagan, J.; et al. Isotope effects on L-H threshold and confinement in tokamak plasmas. Plasma Phys. Control. Fusion 2018, 60, 014045. [Google Scholar] [CrossRef]
- Nielsen, F.; Nock, R. Visualizing hyperbolic Voronoi diagrams. In Proceedings of the 30th Annual Symposium on Computational Geometry (SOCG’14), Kyoto, Japan, 8–11 June 2014; pp. 90–91. [Google Scholar]
- McGaugh, S. The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND. Astron. J. 2012, 143, 40. [Google Scholar] [CrossRef]
MLE | |||||||||||
± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± | |
GLS | |||||||||||
± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± |
MLE | ||||||
± | ± | ± | ± | ± | ± | |
GLS | ||||||
± | ± | ± | ± | ± | ± |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdoolaege, G. Geodesic Least Squares: Robust Regression Using Information Geometry. Phys. Sci. Forum 2023, 9, 5. https://doi.org/10.3390/psf2023009005
Verdoolaege G. Geodesic Least Squares: Robust Regression Using Information Geometry. Physical Sciences Forum. 2023; 9(1):5. https://doi.org/10.3390/psf2023009005
Chicago/Turabian StyleVerdoolaege, Geert. 2023. "Geodesic Least Squares: Robust Regression Using Information Geometry" Physical Sciences Forum 9, no. 1: 5. https://doi.org/10.3390/psf2023009005
APA StyleVerdoolaege, G. (2023). Geodesic Least Squares: Robust Regression Using Information Geometry. Physical Sciences Forum, 9(1), 5. https://doi.org/10.3390/psf2023009005