Searches for Dark Matter in the Sun with the IceCube Neutrino Telescope †
Abstract
:1. Introduction
2. Dark Matter Search in the Earth
2.1. Method
2.2. Sensitivities
3. Solar Atmospheric Neutrinos
3.1. Data Sample
3.2. Model and Sensitivities
4. Solar Dark Matter
4.1. Method
4.2. Sensitivity
5. Secluded Dark Matter
Limits
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; et al. IceTop: The surface component of IceCube. Nucl. Instrum. Meth. A 2013, 700, 188–220. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. Eur. Phys. J. C 2017, 77, 627. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Search for neutrinos from decaying dark matter with IceCube. Eur. Phys. J. C 2018, 78, 831. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Gaisser, T.K.; Steigman, G.; Tilav, S. Limits on Cold Dark Matter Candidates from Deep Underground Detectors. Phys. Rev. D 1986, 34, 2206. [Google Scholar] [CrossRef]
- Niblaeus, C.; Beniwal, A.; Edsjö, J. Neutrinos and gamma rays from long-lived mediator decays in the Sun. J. Cosmol. Astropart. Phys. 2019, 11, 11. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Schneider, A.; Yuan, T. A binned likelihood for stochastic models. J. High Energ. Phys. 2019, 30, 2019. [Google Scholar] [CrossRef] [Green Version]
- Renzi, G. Search for dark matter annihilation in the center of the Earth with 8 years of IceCube data. PoS 2019, ICRC2019, 541. [Google Scholar]
- Renzi, G.; for the IceCube Collaboration. Search for dark matter from the center of the Earth with 8 years of IceCube data. PoS 2021, ICRC2021, 526. [Google Scholar]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for dark matter annihilation in the earth using the ANTARES neutrino telescope. Phys. Dark Universe 2017, 16, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Mijakowski, P.; for the Super-Kamiokande Collaboration. Dark Matter Searches at Super-Kamiokande. J. Phys. Conf. Ser. 2020, 1342, 012075. [Google Scholar] [CrossRef]
- Ng, K.C.; Beacom, J.F.; Peter, A.H.; Rott, C. Solar atmospheric neutrinos: A new neutrino floor for dark matter searches. Phys. Rev. D 2017, 96, 103006. [Google Scholar] [CrossRef] [Green Version]
- Linden, T.; Zhou, B.; Beacom, J.F.; Peter, A.H.G.; Ng, K.C.Y.; Tang, Q.W. Evidence for a New Component of High-Energy Solar Gamma-Ray Production. Phys. Rev. Lett. 2018, 121, 131103. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, J.; Roellinghoff, G.; Lazar, J. for the IceCube Collaboration. Recent Progress in Solar Atmospheric Neutrino Searches with IceCube. PoS 2021, ICRC2021, 1174. [Google Scholar]
- Edsjö, J.; Elevant, J.; Enberg, R.; Niblaeus, C. Neutrinos from cosmic ray interactions in the Sun. J. Cosmol. Astropart. Phys. 2017, 2017, 033. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Belmont-Moreno, E.; BenZvi, S.Y.; Brisbois, C.; et al. Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC. Phys. Rev. D 2018, 98, 123012. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; An, R.; et al. Searching for Dark Matter from the Sun with the IceCube Detector. PoS 2021, ICRC2021, 20. [Google Scholar]
- Liu, Q.; Lazar, J.; Argüelles, C.A.; Kheirandish, A. χaroν: A tool for neutrino flux generation from WIMPs. J. Cosmol. Astropart. Phys. 2020, 2020, 43. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Bauer, C.W.; Rodd, N.L.; Webber, B.R. Dark matter spectra from the electroweak to the Planck scale. J. High Energy Phys. 2021, 2021, 121. [Google Scholar] [CrossRef]
- Martin, S.P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 1998, 18, 1. [Google Scholar]
- Batell, B.; Pospelov, M.; Ritz, A.; Shang, Y. Solar gamma rays powered by secluded dark matter. Phys. Rev. D 2010, 81, 075004. [Google Scholar] [CrossRef] [Green Version]
- Toennis, C.; IceCube Collaboration; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.A., Jr.; et al. Search for secluded dark matter with 6 years of IceCube data. PoS 2021, ICRC2021, 521. [Google Scholar]
- Ajello, M.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; et al. Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun. Phys. Rev. D 2007, 84, 032007. [Google Scholar] [CrossRef] [Green Version]
- Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys. 2016, 5, 16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tönnis, C., on behalf of the IceCube Collaboration. Searches for Dark Matter in the Sun with the IceCube Neutrino Telescope. Phys. Sci. Forum 2023, 8, 26. https://doi.org/10.3390/psf2023008026
Tönnis C on behalf of the IceCube Collaboration. Searches for Dark Matter in the Sun with the IceCube Neutrino Telescope. Physical Sciences Forum. 2023; 8(1):26. https://doi.org/10.3390/psf2023008026
Chicago/Turabian StyleTönnis, Christoph on behalf of the IceCube Collaboration. 2023. "Searches for Dark Matter in the Sun with the IceCube Neutrino Telescope" Physical Sciences Forum 8, no. 1: 26. https://doi.org/10.3390/psf2023008026
APA StyleTönnis, C., on behalf of the IceCube Collaboration. (2023). Searches for Dark Matter in the Sun with the IceCube Neutrino Telescope. Physical Sciences Forum, 8(1), 26. https://doi.org/10.3390/psf2023008026