Molecular Docking Study on the Interaction of Rhodopsin-like Receptors with Tetracoordinated Gold(III) Complexes †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ott, I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Chen, G.; Gu, C.; Wang, Q.; Gao, Z.; Xu, M. Cytotoxicity and DNA Binding Ability of Two Novel Gold (III) Complexes. J. Appl. Spectrosc. 2019, 86, 618–622. [Google Scholar]
- Bugarčić, Ž.D.; Bogojeski, J.; Eldik, R.V. Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd(II) in reference to Pt(II) complexes with bio-molecules. Coord. Chem. Rev. 2015, 292, 91–106. [Google Scholar] [CrossRef]
- Nordon, C.; Boscutti, G.; Gabbiani, C.; Massai, L.; Pettenuzzo, N.; Fassina, A.; Fregona, D. Cell and Cell-Free Mechanistic Studies on Two Gold(III) Complexes with Proven Antitumor Properties. Eur. J. Inorg. Chem. 2017, 12, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Đurović, M.D.; Bugarčić, Ž.D.; Eldik, V. R Stability and reactivity of gold compounds–From fundamental aspects to applications. Coord. Chem. Rev. 2017, 338, 186–206. [Google Scholar] [CrossRef]
- Radisavljević, S.; Bratsos, I.; Scheurer, A.; Korzekwa, J.; Masnikosa, R.; Tot, A.; Gligorijević, N.; Radulović, S.; Rilak-Simović, A. New gold pincer-type complexes: Synthesis, characterization, DNA binding studies and cytotoxicity. Dalton Trans. 2018, 47, 13696–13713. [Google Scholar] [CrossRef] [PubMed]
- Glišić, B.Đ.; Đuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014, 43, 5950–5969. [Google Scholar] [CrossRef] [PubMed]
- Tiekink, E.R.T. Anti-cancer potential of gold complexes. Inflammopharmacology 2008, 16, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Lum, C.T.; Lok, C.N.; Zhang, J.J.; Che, C.M. Chemical biology of anticancer gold (III) and gold (I) complexes. Chem. Soc. Rev. 2015, 44, 8786–8801. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaroudi, S.S.; Monim-ul-Mehboob, M.; Altaf, M.; Al-Saadi, A.A.; Wazeer, M.I.M.; Altuwaijri, S.; Isab, A.A. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold (III) complexes: Antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines. Biometals 2014, 27, 1115–1136. [Google Scholar] [CrossRef] [PubMed]
- Pooja, P.; Ramesh, K.; Sourabh, K.; Amit, C.; Rajeev, S. Reviewing Gold(III) complexes as effective biological operators. Main Group Chem. 2018, 17, 35–52. [Google Scholar]
- Palanichamy, K.; Sreejayan, N.; Ontko, A.C. Overcoming cisplatin resistance using gold (III) mimics: Anticancer activity of novel gold (III) polypyridyl complexes. J. Inorg. Biochem. 2012, 106, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.; Melo, R.; Preto, A.J.; Almeida, J.G.; Moreira, I.S.; Dias, S.C.; Maria, N. In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease. Curr. Neuropharmacol. 2018, 16, 786–848. [Google Scholar] [CrossRef] [PubMed]
- Gutie’rrez-de-Tera’n, H.; Centeno, N.B.; Pastor, M.; Sanz, T. Novel Approaches for Modeling of the A1 Adenosine Receptor and Its Agonist Binding Site. Funct. Bioinform. 2004, 54, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.; MeloIrina, R.; Moreira, L.S.; Cordeiro, N.N.D.S. Computer-Aided Drug Design Approaches to Study Key Therapeutic Targets in Alzheimer’s Disease. In Computational Modeling of Drugs against Alzheimer’s Disease; Humana Press: New York, NY, USA, 2018; pp. 61–106. [Google Scholar]
- Radisavljević, S.; Kesić, A.Đ.; Ćoćić, D.; Puchta, R.; Senft, L.; Milutinović, M.; Petrović, B. Studies of the stability, nucleophilic substitution reactions, DNA/BSA interactions, cytotoxic activity, DFT and molecular docking of some tetra-and penta-coordinated gold (iii) complexes. New J. Chem. 2020, 44, 11172–11187. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deupi, X.; Edwards, P.; Singhal, A.; Nickle, B.; Oprian, D.; Schertler, G.; Standfuss, J. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl. Acad. Sci. USA 2012, 109, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BIOVIA. Dassault Systèmes, Discovery Studio Visualizer, v20.1.0.19295; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Fuhrmann, J.; Rurainski, A.; Lenhof, H.-P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem. 2010, 31, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
Conformations of Ligand | ΔGbind (kJ/mol) | Ki (nM) | Hydrogen Bond | Hydrophobic Contact |
---|---|---|---|---|
1 | −35.44 | 6.2 × 102 | A:ILE189:HN | A:MET207 A:TRP265 A:TYR268 A:TYR191 A:ALA272 A:TYR191 A:PHE208 A:ILE189 A:LEU125 |
2 | −35.44 | 6.2 × 102 | A:ILE189:HN | A:MET207 A:HIS211 A:TRP265 A:TYR268 A:TYR191 A:ALA272 A:TYR191 A:PHE208 A:ILE189 A:LEU125 |
3 | −35.35 | 6.4 × 102 | A:ILE189:HN | A:MET207 A:HIS211 A:TRP265 A:TYR268 A:TYR191 A:ALA272 A:TYR191 A:PHE208 A:ILE189 A:LEU125 |
Conformations of Ligand | ΔGbind (kJ/mol) | Ki (μM) | Hydrogen Bond | Hydrophobic Contact |
---|---|---|---|---|
1 | −40.50 | 8.1 × 10 | / | A:MET207 A:ALA269 A:ALA272 A:ILE189 A:VAL204 A:TYR191 A:TRP265 A:TYR268 |
2 | −40.46 | 8.1 × 10 | / | A:MET207 A:ALA269 A:ALA272 A:ILE189 A:VAL204 A:TYR191 A:TRP265 A:TYR268 |
3 | −40.38 | 8.4 × 10 | / | A:MET207 A:ALA269 A:ALA272 A:ILE189 A:VAL204 A:TYR191 A:TRP265 A:TYR268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesić, A.S.; Milenković, D.; Antonijević, M.; Petrović, B.; Marković, Z. Molecular Docking Study on the Interaction of Rhodopsin-like Receptors with Tetracoordinated Gold(III) Complexes. Biol. Life Sci. Forum 2021, 7, 17. https://doi.org/10.3390/ECB2021-10264
Kesić AS, Milenković D, Antonijević M, Petrović B, Marković Z. Molecular Docking Study on the Interaction of Rhodopsin-like Receptors with Tetracoordinated Gold(III) Complexes. Biology and Life Sciences Forum. 2021; 7(1):17. https://doi.org/10.3390/ECB2021-10264
Chicago/Turabian StyleKesić, Ana S., Dejan Milenković, Marko Antonijević, Biljana Petrović, and Zoran Marković. 2021. "Molecular Docking Study on the Interaction of Rhodopsin-like Receptors with Tetracoordinated Gold(III) Complexes" Biology and Life Sciences Forum 7, no. 1: 17. https://doi.org/10.3390/ECB2021-10264
APA StyleKesić, A. S., Milenković, D., Antonijević, M., Petrović, B., & Marković, Z. (2021). Molecular Docking Study on the Interaction of Rhodopsin-like Receptors with Tetracoordinated Gold(III) Complexes. Biology and Life Sciences Forum, 7(1), 17. https://doi.org/10.3390/ECB2021-10264