Green Extraction of Flavonoids from Orange Peels Using Deep Eutectic Solvents †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of Natural Deep Eutectic Solvents
2.3. Extraction Procedure
2.4. Total Flavonoid Content
2.5. Experimental Design
2.6. Statistical Analyses
3. Results and Discussion
3.1. Evaluation of NADES Composition on Flavonoid Extraction Efficiency
3.2. Optimization of Flavonoid Extraction by Response Surface Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panić, M.; Andlar, M.; Tišma, M.; Rezić, T.; Šibalić, D.; Bubalo, M.C.; Redovniković, I.R. Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste Manag. 2021, 120, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Panić, M.; Stojković, M.R.; Kraljić, K.; Škevin, D.; Redovniković, I.R.; Srček, V.G.; Radošević, K. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019, 283, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High biological value compounds extraction from citruswaste with non-conventional methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Li, Z.H.; Liu, L.L.; Wang, H.; Yang, S.H.; Zhang, J.S.; Zhang, Y. Green extraction using deep eutectic solvents and antioxidant activities of flavonoids from two fruits of Rubia species. LWT Food Sci. Technol. 2021, 148, 111708. [Google Scholar] [CrossRef]
- Manurung, R.; Siregar, A.G.A. Performance of menthol based deep eutectic solvents in the extraction of carotenoids from crude palm oil. Int. J. Geomate 2020, 19, 131–137. [Google Scholar] [CrossRef]
- Oomen, W.W.; Begines, P.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvent Extraction of Flavonoids of Scutellaria baicalensis as a Replacement for Conventional Organic Solvents. Molecules 2020, 25, 617. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bosiljkov, T.; Dujmić, F.; Bubalo, M.C.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Redovniković, I.R.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 1996, 81, 501–508. [Google Scholar] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Quan, T.; Wang, D.; Yang, L.; Liu, S.; Tao, Y.; Wang, J.; Deng, L.; Kang, X.; Zhang, K.; Xia, Z.; et al. Effective extraction methods based on hydrophobic deep eutectic solvent coupled with functional molecularly imprinted polymers: Application on quercetagetin extraction from natural medicine and blood. Microchem. J. 2022, 174, 107076. [Google Scholar] [CrossRef]
- Zannou, O.; Koca, I. Optimization and stabilization of the antioxidant properties from Alkanet (Alkanna tinctoria) with natural deep eutectic solvents. Arab. J. Chem. 2020, 13, 6437–6450. [Google Scholar] [CrossRef]
- Da Silva, D.T.; Pauletto, R.; da Silva Cavalheiro, S.; Bochi, V.C.; Rodrigues, E.; Weber, J.; da Silva, C.D.B.; Morisso, F.D.P.; Barcia, M.T.; Emanuelli, T. Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. J. Food Compos. Anal. 2020, 89, 103470. [Google Scholar] [CrossRef]
- Doldolova, K.; Bener, M.; Lalikoğlu, M.; Aşçı, Y.S.; Arat, R.; Apak, R. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem. 2021, 353, 129337. [Google Scholar] [CrossRef] [PubMed]
No. | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Molar Ratio |
---|---|---|---|
NADES-1 | Choline chloride | Fructose | 1.9:1 |
NADES-2 | Choline chloride | Glycerol | 1:2 |
NADES-3 | Proline | Malic acid | 1:1 |
NADES-4 | Betaine | Citric acid | 1:1 |
Independent Variable | Level | |||
---|---|---|---|---|
−1 | 0 | +1 | ||
Liquid/solid ratio | X1 | 5 | 15 | 25 |
NADES (%, v/v) | X2 | 10 | 50 | 85 |
Extraction time | X3 | 5 | 15 | 30 |
Run | Extraction Conditions | Extraction Yield | ||
---|---|---|---|---|
X1 | X2 | X3 | TFC | |
1 | 15 | 50 | 10 | 51.4 ± 3.5 |
2 | 25 | 10 | 15 | 224.4 ± 2.3 |
3 | 5 | 50 | 5 | 37.3 ± 1.9 |
4 | 15 | 30 | 15 | 147.0 ± 1.2 |
5 | 5 | 20 | 20 | 23.6 ± 3.0 |
6 | 25 | 30 | 5 | 60.5 ± 4.0 |
7 | 10 | 50 | 30 | 103.5 ± 1.7 |
8 | 15 | 30 | 15 | 75.2 ± 3.6 |
9 | 15 | 30 | 15 | 150.2 ± 3.5 |
10 | 15 | 10 | 30 | 102.3 ± 5.9 |
11 | 25 | 30 | 5 | 79.0 ± 1.8 |
12 | 25 | 10 | 30 | 114.5 ± 5.8 |
13 | 5 | 20 | 20 | 26.1 ± 3.2 |
14 | 10 | 10 | 5 | 140.9 ± 5.3 |
15 | 5 | 40 | 20 | 59.8 ± 2.4 |
16 | 25 | 30 | 30 | 86.4 ± 3.4 |
17 | 25 | 50 | 15 | 81.8 ± 2.5 |
18 | 20 | 10 | 5 | 92.9 ± 5.3 |
19 | 15 | 30 | 15 | 95.7 ± 4.5 |
20 | 5 | 30 | 5 | 80.4 ± 2.5 |
21 | 15 | 75 | 10 | 429.8 ± 1.7 |
22 | 5 | 75 | 5 | 316.1 ± 10.4 |
23 | 10 | 75 | 15 | 516.8 ± 2.9 |
24 | 25 | 75 | 15 | 499.2 ± 2.8 |
25 | 15 | 85 | 10 | 29.0 ± 1.8 |
26 | 5 | 85 | 5 | 30.0 ± 1.3 |
27 | 10 | 85 | 15 | 56.7 ± 1.9 |
28 | 25 | 85 | 15 | 41.3 ± 2.5 |
Source | TFC a | ||||
---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 3.9 | 9 | 43,011.8 | 4.00 | 0.006 ** |
X1 | 5763.6 | 1 | 5763.6 | 0.53 | 0.474 ns |
X2 | 54,931.9 | 1 | 54,931.9 | 5.11 | 0.036 * |
X3 | 113.6 | 1 | 113.6 | 0.01 | 0.919 ns |
X1 X2 | 43.0 | 1 | 43.0 | 0.01 | 0.950 ns |
X1 X3 | 2339.6 | 1 | 2339.6 | 0.21 | 0.647 ns |
X2 X3 | 1088.5 | 1 | 1088.5 | 0.10 | 0.754 ns |
X12 | 4240.3 | 1 | 4240.3 | 0.39 | 0.538 ns |
X22 | 2666.1 | 1 | 2666.1 | 0.24 | 0.625 ns |
X32 | 6922.2 | 1 | 6922.2 | 0.64 | 0.433 ns |
Residual | 1.9 | 18 | 10,753.4 | ||
Lack of Fit | 1.9 | 13 | 14,552.4 | 16.61 | 0.003 ** |
Pure Error | 4379.4 | 5 | 875.9 | ||
Cor Total | 5.8 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viñas-Ospino, A.; Gomez-Urios, C.; Penadés-Soler, A.; Frígola, A.; Esteve, M.J.; López-Malo, D.; Blesa, J. Green Extraction of Flavonoids from Orange Peels Using Deep Eutectic Solvents. Biol. Life Sci. Forum 2021, 6, 77. https://doi.org/10.3390/Foods2021-10976
Viñas-Ospino A, Gomez-Urios C, Penadés-Soler A, Frígola A, Esteve MJ, López-Malo D, Blesa J. Green Extraction of Flavonoids from Orange Peels Using Deep Eutectic Solvents. Biology and Life Sciences Forum. 2021; 6(1):77. https://doi.org/10.3390/Foods2021-10976
Chicago/Turabian StyleViñas-Ospino, Adriana, Clara Gomez-Urios, Anna Penadés-Soler, Ana Frígola, María José Esteve, Daniel López-Malo, and Jesús Blesa. 2021. "Green Extraction of Flavonoids from Orange Peels Using Deep Eutectic Solvents" Biology and Life Sciences Forum 6, no. 1: 77. https://doi.org/10.3390/Foods2021-10976
APA StyleViñas-Ospino, A., Gomez-Urios, C., Penadés-Soler, A., Frígola, A., Esteve, M. J., López-Malo, D., & Blesa, J. (2021). Green Extraction of Flavonoids from Orange Peels Using Deep Eutectic Solvents. Biology and Life Sciences Forum, 6(1), 77. https://doi.org/10.3390/Foods2021-10976