Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove †
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
5. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Features | RM | AIC | Parameters |
---|---|---|---|---|
1 | L | 0.5 | 982.3185 | 3 |
2 | L | 1 | 982.4030 | 3 |
3 | L | 1.5 | 982.5269 | 3 |
4 | L | 2 | 982.6856 | 3 |
5 | L | 2.5 | 982.8816 | 3 |
6 | L | 3 | 983.1131 | 3 |
7 | L | 3.5 | 983.3792 | 3 |
8 | L | 4 | 983.6834 | 3 |
9 | LQ | 0.5 | 978.8699 | 3 |
10 | LQ | 1 | 978.9590 | 3 |
11 | LQ | 1.5 | 979.1044 | 3 |
12 | LQ | 2 | 979.3069 | 3 |
13 | LQ | 2.5 | 979.5627 | 3 |
14 | LQ | 3 | 979.8737 | 3 |
15 | LQ | 3.5 | 980.2352 | 3 |
16 | LQ | 4 | 980.6515 | 3 |
17 | LQH | 0.5 | 991.0409 | 10 |
18 | LQH | 1 | 985.1734 | 7 |
19 | LQH | 1.5 | 986.7045 | 6 |
20 | LQH | 2 | 979.4320 | 3 |
21 | LQH | 2.5 | 979.6956 | 3 |
22 | LQH | 3 | 980.0127 | 3 |
23 | LQH | 3.5 | 980.3777 | 3 |
24 | LQH | 4 | 980.7951 | 3 |
25 | LQHP | 0.5 | 992.5499 | 10 |
26 | LQHP | 1 | 981.4068 | 5 |
27 | LQHP | 1.5 | 982.4808 | 5 |
28 | LQHP | 2 | 978.3702 | 3 |
29 | LQHP | 2.5 | 982.2892 | 4 |
30 | LQHP | 3 | 981.1815 | 3 |
31 | LQHP | 3.5 | 982.8461 | 3 |
32 | LQHP | 4 | 984.7757 | 3 |
33 | LQHPT | 0.5 | 1016.0185 | 17 |
34 | LQHPT | 1 | 984.6857 | 7 |
35 | LQHPT | 1.5 | 987.4957 | 7 |
36 | LQHPT | 2 | 979.7848 | 4 |
37 | LQHPT | 2.5 | 980.8471 | 4 |
38 | LQHPT | 3 | 982.1643 | 4 |
39 | LQHPT | 3.5 | 983.7439 | 4 |
40 | LQHPT | 4 | 985.5982 | 4 |
References
- Loumou, A.; Giourga, C. Olive groves: The life and identity of the Mediterranean. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A review of Bactrocera oleae (Rossi) impact in olive products: From the tree to the table. Trends Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 2016, 222, 138–147. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Jiménez, L.; Soberón, J. Leaving the area under the receiving operating characteristic curve behind: An evaluation method for species distribution modelling applications based on presence-only data. Methods Ecol. Evol. 2020, 11, 1571–1586. [Google Scholar] [CrossRef]
- Nentwig, W.; Blick, T.; Bosmans, R.; Gloor, D.; Hänggi, A.; Kropf, C. Spiders of Europe. Version 11.2020. 2020. Available online: https://www.araneae.nmbe.ch (accessed on 20 October 2020).
- Benhadi-Marín, J.; (Centro de Investigação de Montanha, Bragança, Portugal); Pereira, J.A.; (Centro de Investigação de Montanha, Bragança, Portugal). Personal communication, 2020.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org (accessed on 20 October 2020).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package, Version 1.1-4. 2017. Available online: https://CRAN.R-project.org/package=dismo (accessed on 7 September 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide toMaxent for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- GBIF. The Global Biodiversity Information Facility. What Is GBIF? 2020. Available online: https://www.gbif.org/what-is-gbif (accessed on 1 November 2020).
- GBIF.org. GBIF Occurrence. 2020. Available online: https://doi.org/10.15468/dl.e3g5nm (accessed on 7 September 2020).
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Fereres, E. Variability in adaptive mechanisms to water deficits in annual and perennial crop plants. Bull. Soc. Bot. Fr. Actual. Bot. 1984, 131, 17–32. [Google Scholar] [CrossRef] [Green Version]
Code in Database | Bioclimatic Variable |
---|---|
bio1 | Annual mean temperature |
bio2 | Mean diurnal range (mean of monthly (max temp − min temp)) |
bio3 | Isothermality (bio2/bio7) (×100) |
bio4 | Temperature seasonality (standard deviation × 100) |
bio5 | Max temperature of warmest month |
bio6 | Min temperature of coldest month |
bio7 | Temperature annual range (bio5–bio6) |
bio8 | Mean temperature of wettest quarter |
bio9 | Mean temperature of driest quarter |
bio10 | Mean temperature of warmest quarter |
bio11 | Mean temperature of coldest quarter |
bio12 | Annual precipitation |
bio13 | Precipitation of wettest month |
bio14 | Precipitation of driest month |
bio15 | Precipitation seasonality (coefficient of variation) |
bio16 | Precipitation of wettest quarter |
bio17 | Precipitation of driest quarter |
bio18 | Precipitation of warmest quarter |
bio19 | Precipitation of coldest quarter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhadi-Marín, J.; Pereira, J.A.; Santos, S.A.P. Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove. Biol. Life Sci. Forum 2021, 4, 64. https://doi.org/10.3390/IECPS2020-08598
Benhadi-Marín J, Pereira JA, Santos SAP. Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove. Biology and Life Sciences Forum. 2021; 4(1):64. https://doi.org/10.3390/IECPS2020-08598
Chicago/Turabian StyleBenhadi-Marín, Jacinto, José Alberto Pereira, and Sónia A. P. Santos. 2021. "Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove" Biology and Life Sciences Forum 4, no. 1: 64. https://doi.org/10.3390/IECPS2020-08598
APA StyleBenhadi-Marín, J., Pereira, J. A., & Santos, S. A. P. (2021). Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove. Biology and Life Sciences Forum, 4(1), 64. https://doi.org/10.3390/IECPS2020-08598