Can Elevation Affect the Distribution of Nymphalidae Butterflies Adjacent to the Protected Regions in the Eastern Himalayan Landscape of West Bengal, India? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Protocol
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Storch, D.; Konvicka, M.; Benes, J.; Martinková, J.; Gaston, K.J. Distribution patterns in butterflies and birds of the Czech Republic: Separating effects of habitat and geographical position. J. Biogeogr. 2003, 30, 1195–1205. [Google Scholar] [CrossRef]
- Arora, G.S. Lepidoptera: Rhopalocera. Fauna of Western Himalaya (UP). Zool. Surv. India. Ecol. Surv. 1995, 1, 61–73. [Google Scholar]
- Uniyal, V.P.; Mathur, P.K. Diversity of Butterflies in Great Himalayan National Park, Western Himalaya. Indian J. For. 1998, 21, 150–155. [Google Scholar]
- Joshi, P.C.; Kothari, K.; Badoni, V.P.; Arya, M.; Agarwal, A. Species composition and density of entomofauna vis a vis alti-tudinal variations and disturbances in Nanda Devi Biosphere Reserve, Uttaranchal, India. Asian J. Microbiol. Biotech-Nology Environ. Sci. 2004, 6, 301–308. [Google Scholar]
- Koh, L.P. Impacts of land use change on South-east Asian forest butterflies: A review. J. Appl. Ecol. 2007, 44, 703–713. [Google Scholar] [CrossRef]
- Basset, Y. The seasonality of arboreal arthropods foraging within an Australian rainforest tree. Ecol. Èntomol. 1991, 16, 265–278. [Google Scholar] [CrossRef]
- Basset, Y. Leaf production of an overstorey rainforest tree and its effects on the temporal distribution of associated insect herbivores. Oecologia 1991, 88, 211–219. [Google Scholar] [CrossRef]
- Slansky, F.J. Nutritional ecology: The fundamental quest for nutrients. In Caterpillars: Ecological and Evolutionary Constraints on Foraging; Stamp, N.E., Casey, T.M., Eds.; Chapman & Hall: New York, NY, USA, 1993; pp. 29–91. [Google Scholar]
- Hawkins, B.A.; Porter, E.E. Water–energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecol. Èntomol. 2003, 28, 678–686. [Google Scholar] [CrossRef]
- Devi, R.; Kumar, P.; Mattu, V.K. An assessment of diversity patterns of butterfly fauna (Lepidoptera: Papilionoidea) from subalpine zone of Western Himalaya. Orient. Insects 2023, 57, 1084–1101. [Google Scholar] [CrossRef]
- Bisht, M.; Goswami, D.; Uniyal, V.P.; Singh, V. Diversity of butterfly along different altitudinal gradient of Munsiyari, Western Himalayan, Uttarakhand, India. Asian J. Conserv. Biol. 2023, 12, 258–265. [Google Scholar]
- Sidhu, A. An assessment and distribution of butterflies (Lepidoptera: Papilionoidea) in Sangla Valley (District Kinnaur: Himachal Pradesh). J. Agric. Ecol. 2023, 15, 36–44. [Google Scholar] [CrossRef]
- Dewan, S.; Chettri, I.K.; Limboo, A.H.S.; Acharya, B.K. Butterflies of the Indian Himalaya along with Nepal and Bhutan. In Biodiversity Hotspot of the Himalaya Pullaiah; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 271–292. [Google Scholar]
- Sharma, N. Inventory of butterflies (Insecta: Lepidoptera: Papilionoidea) of Itanagar wildlife sanctuary, Arunachal Pradesh. Ann. Entomol. 2023, 41, 68. [Google Scholar]
- Shrestha, B.R.; Baral, S.; Budha-Magar, S.; Magar, K.T.; Gaudel, P.; Suwal, S.P.; Tamang, S.R.; Dewan, A.; Gurung, M.B.; Shrestha, P. Vegetation productivity determines the response of butterflies along elevation gradients in the trans-Himalayas, Nepal. Ecosphere 2024, 15, e70019. [Google Scholar] [CrossRef]
- Weiss, S.B.; Murphy, D.D.; White, R.R. Sun, slope, and butterflies: Topographic determinants of habitat quality for euphydryas editha. Ecology 1988, 69, 1486–1496. [Google Scholar] [CrossRef]
- Haribal, M. The Butterflies of Sikkim Himalaya and Their Natural History. Sikkim. Sikkim Natural Conservation Foundation; Gangtok: Sikkim, India, 1992; p. 217. [Google Scholar]
- Kehimkar, I. The Book of Indian Butterflies. Bombay Natural History Society; Oxford University Press: New Delhi, India, 2008. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Primceton University Press: Princeton, NJ, USA, 1988; p. 179. [Google Scholar]
- Buzas, M.A.; Hayek, L.-A.C. On richness and evenness within and between communities. Paleobiology 2005, 31, 199–220. [Google Scholar] [CrossRef]
- Caruso, T.; Pigino, G.; Bernini, F.; Bargagli, R.; Migliorini, M. The Berger–Parker index as an effective tool for monitoring the biodiversity of disturbed soils: A case study on Mediterranean oribatid (Acari: Oribatida) assemblages. Biodivers. Conserv. 2006, 16, 3277–3285. [Google Scholar] [CrossRef]
- Reich, K.F.; Kunz, M.; Bitter, A.W.; von Oheimb, G. Do different indices of forest structural heterogeneity yield consistent results? Ifor.-Biogeosci. For. 2022, 15, 424. [Google Scholar] [CrossRef]
- McDonald, K.A.; Brown, J.H. Using montane mammals to model extinctions due to global change. Conserv. Biol. 1992, 6, 409–415. [Google Scholar] [CrossRef]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513. [Google Scholar] [CrossRef]
- Liang, J.; Buongiorno, J.; Monserud, R.A.; Kruger, E.L.; Zhou, M. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For. Ecol. Manag. 2007, 243, 116–127. [Google Scholar] [CrossRef]
- Lexerød, N.L.; Eid, T. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For. Ecol. Manag. 2005, 222, 17–28. [Google Scholar] [CrossRef]
- Rodriguez, S.; Martin, A.P.; Sousa-Pinto, I.; Arenas, F. Biodiversity effects on macroalgal productivity: Exploring the roles of richness, evenness and species traits. Mar. Ecol. Prog. Ser. 2016, 562, 79–91. [Google Scholar] [CrossRef]
- Crase, B.; Vesk, P.A.; Liedloff, A.; Wintle, B.A. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Glob. Chang. Biol. 2015, 21, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ellison, A.M. A unified concept of dominance applicable at both community and species scales. Ecosphere 2018, 9, e02477. [Google Scholar] [CrossRef]
- Fleishman, E.; Thomson, J.R.; Mac Nally, R.; Murphy, D.D.; Fay, J.P. Using indicator species to predict species richness of multiple taxonomic groups. Conserv. Biol. 2005, 19, 1125–1137. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Anadón, J.D.; Lohman, D.J.; Doleck, T.; Lakhankar, T.; Shrestha, B.B.; Thapa, P.; Devkota, D.; Tiwari, S.; Jha, A.; et al. The impact of climate change on biodiversity in Nepal: Current knowledge, lacunae, and opportunities. Climate 2017, 5, 80. [Google Scholar] [CrossRef]
- Ehl, S.; Böhm, N.; Wörner, M.; Rákosy, L.; Schmitt, T. Dispersal and adaptation strategies of the high mountain butterfly Boloria pales in the Romanian Carpathians. Front. Zool. 2019, 16, 1. [Google Scholar] [CrossRef]
- Betz, O.; Srisuka, W.; Puthz, V. Elevational gradients of species richness, community structure and niche occupation of tropical rove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Evol. Ecol. 2020, 34, 193–216. [Google Scholar] [CrossRef]
- Longino, J.T.; Branstetter, M.G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in middle American ants. Ecography 2018, 42, 272–283. [Google Scholar] [CrossRef]
- Maicher, V.; Sáfián, S.; Murkwe, M.; Delabye, S.; Przybyłowicz, Ł.; Potocký, P.; Kobe, I.N.; Janeček, Š.; Mertens, J.E.J.; Fokam, E.B.; et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 2019, 47, 342–354. [Google Scholar] [CrossRef]
- Toko, P.S.; Koane, B.; Molem, K.; Miller, S.E.; Novotny, V. Ecological trends in moth communities (Geometridae, Lepi-doptera) along a complete rainforest elevation gradient in Papua New Guinea. Insect Conserv. Divers. 2023, 16, 649–657. [Google Scholar] [CrossRef]
- Fleishman, E.; Austin, G.T.; Weiss, A.D. An empirical test of Rapoport’s elevational rule: Elevational gradients in montane butterfly communities. Ecology 1998, 79, 2482–2493. [Google Scholar]
- Stefanescu, C.; Carnicer, J.; Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography 2010, 34, 353–363. [Google Scholar] [CrossRef]
- Gutiérrez, D. Butterfly richness patterns and gradients. In Biology of Butterflies in Europe; Settele, J., Shreeve, T., Konvička, M., van Dyck, H., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 281–295. [Google Scholar]
- Dewan, S.; Acharya, B.K. Rapoport’s rule explains the range size distribution of butterflies along the Eastern Himalayan elevation gradient. Biotropica 2024, 56, e13311. [Google Scholar] [CrossRef]
- Dewan, S.; Acharya, B.K.; Vetaas, O.R.; Ghatani, S. Do sub-groups of butterflies display different elevational distribution patterns in the Eastern Himalaya, India? Front. Biogeogr. 2021, 13, 1–19. [Google Scholar] [CrossRef]
- Jetz, W.; Rahbek, C. Geographic range size and determinants of avian species richness. Science 2002, 297, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Rahbek, C.; Gotelli, N.J. The mid-domain effect and species richness patterns: What have we learnt so far? Am. Nat. 2004, 163, E1–E23. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Mao, L.; Zhang, J.; Zhou, K.; Gao, J. Environmental determinants of geographic butterfly richness pattern in eastern China. Biodivers. Conserv. 2014, 23, 1453–1467. [Google Scholar] [CrossRef]
- Nieto-Sánchez, S.; Gutiérrez, D.; Wilson, R.J. Long-term change and spatial variation in butterfly communities over an elevational gradient: Driven by climate, buffered by habitat. Divers. Distrib. 2015, 21, 950–961. [Google Scholar] [CrossRef]
- Kerner, J.M.; Krauss, J.; Maihoff, F.; Bofinger, L.; Classen, A. Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants. Ecology 2022, 104, e3848. [Google Scholar] [CrossRef]
- Stefanescu, C.; Herrando, S.; Páramo, F. Butterfly species richness in the north-west Mediterranean Basin: The role of natural and human-induced factors. J. Biogeogr. 2004, 31, 905–915. [Google Scholar] [CrossRef]
- Acharya, B.K.; Vijayan, L. Butterfly diversity along the elevation gradient of Eastern Himalaya, India. Ecol. Res. 2015, 30, 909–919. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global Soil Water Balance Geospatial Database. CGIAR Consortium for Spatial Information. 2010. Available online: https://doi.org/10.6084/m9.figshare.7707605.v3 (accessed on 12 December 2024).
- Pellissier, L.; Fiedler, K.; Ndribe, C.; Dubuis, A.; Pradervand, J.; Guisan, A.; Rasmann, S. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol. Evol. 2012, 2, 1818–1825. [Google Scholar] [CrossRef]
- Pollard, E. Temperature, rainfall and butterfly numbers. J. Appl. Ecol. 1988, 25, 819–828. [Google Scholar] [CrossRef]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2004, 8, 224–239. [Google Scholar] [CrossRef]
- Rasmann, S.; Alvarez, N.; Pellissier, L. The altitudinal niche-breadth hypothesis in insect-plant interactions. Annu. Plant Rev. Insect Plant Interact. 2014, 47, 339–359. [Google Scholar]
- Chettri, N. Distribution of butterflies along a trekking corridor in the Khangchendzonga Biosphere Reserve, Sikkim, Eastern Himalayas. Conserv. Sci. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K. A Revised Survey of the Forest Types of India; Government of India Press: New Delhi, India, 1968; p. 404. [Google Scholar]
- Singh, S.P. Attributes of Himalayan forest ecosystems: They are not temperate forests. Proc. Indian Natl. Sci. Acad. 2014, 80, 221. [Google Scholar] [CrossRef]
- Mercado-Gόmez, Y.L.; Mercado-Gόmez, J.D.; Giraldo-Sánchez, C.E. What do butterflies tell us about an intermediate dis-turbance in a dry tropical forest context? Diversity 2023, 15, 927. [Google Scholar] [CrossRef]
- Bendix, J.; Wiley, J.J.; Commons, M.G. Intermediate disturbance and patterns of species richness. Phys. Geogr. 2017, 38, 393–403. [Google Scholar] [CrossRef]
Butterfly Species | Elevational Distribution (masl) | |||||
---|---|---|---|---|---|---|
≤1500 | 1501–2000 | 2001–2500 | 2501–3000 | 3001–3500 | ≥3501 | |
Subfamily: Danainae Tirumala limniace (Cramer) | +++++ | ++ | + | - | - | - |
Tirumala septentrionis (Butler) | +++++ | ++ | + | - | - | - |
Danaus genutia (Cramer) | - | ++ | + | + | - | - |
Danaus chrysippus (Linnaeus) | ++ | +++ | ++++++ | +++ | ++ | + |
Parantica melaneus (Cramer) | + | + | ++ | + | + | - |
Parantica aglea (Stoll) | + | + | + | + | + | - |
Euploea sylvester (Fabricius) | - | + | + | + | + | - |
Euploea core (Cramer) | +++ | ++++ | ++++ | ++ | + | + |
Subfamily: Charaxinae Polyura athamas (Drury) | + | ++ | + | + | - | - |
Polyura eudamippus (Doubleday) | + | + | + | + | - | - |
Charaxes bernardus (Fabricius) | + | + | + | + | - | - |
Charaxes marmax Westwood | + | + | + | + | - | - |
Charaxes solon (Fabricius) | + | + | + | + | - | - |
Melanitis leda (Linnaeus) | + | ++ | ++ | + | - | - |
Melanitis phedima (Cramer) | - | + | + | + | + | - |
Melanitis zitenius (Herbst) | + | + | + | + | - | - |
Mycalesis perseus (Fabricius) | + | + | + | + | - | - |
Mycalesis mineus (Linnaeus) | + | + | + | + | - | - |
Orsotrioena medus (Fabricius) | + | + | + | + | + | - |
Ypthima baldus (Fabricius) | + | + | + | + | + | - |
Ypthima nareda (Kollar) | + | + | + | ++ | + | + |
Ypthima sakra Moore | - | + | + | ++ | ++ | + |
Aulocera swaha (Kollar) | - | + | + | + | ++ | + |
Callerebia ananda (Moore) | - | - | + | + | + | - |
Callerebia scanda (Kollar) | - | - | + | + | + | + |
Neope pulaha (Moore) | - | - | + | + | + | + |
Neope yama (Moore) | - | + | + | + | + | - |
Zophoessa jalaurida (De Niceville) | - | - | + | + | + | + |
Lethe goalpara (Moore) | - | + | + | + | ++ | + |
Lethe nicetas (Hewitson) | - | - | + | + | + | - |
Lethe verma (Kollar) | - | + | + | + | + | + |
Lethe latiaris Hewitson | + | + | + | + | + | + |
Lethe scanda (Moore) | + | + | + | + | + | + |
Lethe serbonis (Hewitson) | ++ | + | + | + | + | + |
Lethe insana (Kollar) | ++ | + | + | + | + | + |
Lethe rohria (Fabricius) | ++ | + | + | + | + | + |
Subfamily: Heliconiinae Acraea issoria (Hübner) | + | + | + | + | + | - |
Childrena childreni (Gray) | - | + | + | + | + | + |
Argyreus hyperbius (Linnaeus) | +++ | + | + | + | + | + |
Issoria lathonia (Linnaeus) | - | - | + | + | + | + |
Cethosia cyane (Drury) | + | + | + | + | + | + |
Phalanta phalantha (Drury) | + | + | + | + | + | + |
Vagrans egista (Cramer) | + | + | + | + | + | - |
Subfamily: Limenitinae Sumalia daraxa (Doubleday) | ++ | + | + | + | - | - |
Parasarpa dudu (Doubleday) | + | + | + | + | + | - |
Parasarpa zayla (Doubleday) | - | + | ++ | + | + | + |
Athyma perius (Linnaeus) | + | ++ | + | + | + | - |
Athyma selenophora (Kollar) | ++ | + | + | + | + | - |
Athyma opalina (Kollar) | - | - | ++ | + | + | + |
Athyma asura (Moore) | - | - | + | + | + | + |
Neptis jumbah (Moore) | ++ | + | + | + | - | - |
Neptis hylas (Linnaeus) | ++ | + | + | + | - | - |
Neptis ananta (Moore) | + | + | + | + | + | + |
Neptis yerburyi (Butler) | - | + | + | + | - | - |
Euthalia aconthea (Cramer) | +++ | ++ | ++ | + | + | + |
Euthalia nais (Forster) | ++ | ++ | + | + | + | - |
Tanaecia lepidea (Butler) | +++ | ++ | + | + | + | + |
Tanaecia julii (Lesson) | +++ | + | + | + | - | - |
Euthalia lubentina (Cramer) | + | + | + | + | + | + |
Euthalia sahadeva (Moore) | - | + | + | + | - | - |
Euthalia franciae (Gray) | - | + | + | + | - | - |
Subfamily: Cyrestinae Cyrestis thyodamas Boisduval | ++ | + | + | + | + | + |
Chersonesia risa (Doubleday) | ++ | + | + | + | - | - |
Stibochiona nicea (Gray) | + | + | + | + | - | - |
Subfamily: Biblidinae Ariadne ariadne (Linnaeus) | ++ | + | + | + | + | + |
Ariadne merione (Cramer) | ++ | + | ++ | + | + | + |
Subfamily: Apaturinae Apatura ambica (Kollar) | + | + | ++ | + | + | + |
Apatura sordida (Moore) | - | + | + | + | - | - |
Dilipa morgiana (Westwood) | - | + | + | + | + | + |
Hestina nama (Doubleday) | + | + | + | + | + | - |
Herona marathus (Doubleday) | ++ | + | + | + | - | - |
Subfamily: Nymphalinae Araschnia prorsoides (Blanchard) | - | - | + | + | + | + |
Symbrenthia niphanda (Moore) | - | + | + | + | + | + |
Symbrenthia hypselis (Godart) | - | + | + | + | + | + |
Symbrenthia hippoclus (Cramer) | - | ++ | + | + | + | + |
Vanessa indica (Herbst) | + | + | + | + | + | + |
Vanessa cardui (Linnaeus) | + | ++ | + | + | + | + |
Aglais cashmiriensis (Kollar) | + | ++ | ++ | ++ | + | + |
Kaniska canace (Linnaeus) | + | +++ | ++ | ++ | + | + |
Junonia orithiya (Linnaeus) | + | + | + | + | + | + |
Junonia hierta (Fabricius) | +++ | +++ | ++ | + | + | - |
Junonia lemonias (Linnaeus) | ++ | + | ++ | + | + | - |
Junonia almana (Linnaeus) | + | + | + | + | - | - |
Hypolimnas misippus (Linnaeus) | + | + | ++ | + | + | + |
Kallima alompra (Moore) | - | - | - | + | + | + |
Subfamily: Libytheinae Libythea lepita (Moore) | - | + | + | + | + | + |
Libythea myrrha (Godart) | - | ++ | + | + | + | + |
Libythea narina rohini (Marshall) | - | + | + | + | + | - |
Indices | Elevational Gradients (masl) | |||||
---|---|---|---|---|---|---|
≤1500 | 1501–2000 | 2001–2500 | 2501–3000 | 3001–3500 | ≥3501 | |
Pielou’s index | 1.402 | 1.420 | 1.418 | 1.423 | 1.419 | 1.424 |
Buzas and Gibson index | 0.892 | 0.933 | 0.927 | 0.942 | 0.934 | 0.952 |
Equitability index | 0.972 | 0.984 | 0.983 | 0.986 | 0.984 | 0.987 |
Berger–Parker dominance | 0.047 | 0.031 | 0.046 | 0.025 | 0.030 | 0.032 |
Gini’s coefficient | 0.264 | 0.205 | 0.184 | 0.185 | 0.202 | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, P. Can Elevation Affect the Distribution of Nymphalidae Butterflies Adjacent to the Protected Regions in the Eastern Himalayan Landscape of West Bengal, India? Biol. Life Sci. Forum 2024, 39, 6. https://doi.org/10.3390/blsf2024039006
Sengupta P. Can Elevation Affect the Distribution of Nymphalidae Butterflies Adjacent to the Protected Regions in the Eastern Himalayan Landscape of West Bengal, India? Biology and Life Sciences Forum. 2024; 39(1):6. https://doi.org/10.3390/blsf2024039006
Chicago/Turabian StyleSengupta, Panchali. 2024. "Can Elevation Affect the Distribution of Nymphalidae Butterflies Adjacent to the Protected Regions in the Eastern Himalayan Landscape of West Bengal, India?" Biology and Life Sciences Forum 39, no. 1: 6. https://doi.org/10.3390/blsf2024039006
APA StyleSengupta, P. (2024). Can Elevation Affect the Distribution of Nymphalidae Butterflies Adjacent to the Protected Regions in the Eastern Himalayan Landscape of West Bengal, India? Biology and Life Sciences Forum, 39(1), 6. https://doi.org/10.3390/blsf2024039006