Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses †
Abstract
:1. Introduction
2. The Classification and Characteristics of EMOs
3. EMO Effectiveness in Wastewater Treatment
4. Interaction of Soil, Agriculture, Plant, and EMOs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahat, A.; Awual, M.R.; Khaleque, M.A.; Alam, M.Z.; Naushad, M.; Chowdhury, A.M.S. Large-pore diameter nano-adsorbent and its application for rapid lead (II) detection and removal from aqueous media. Chem. Eng. J. 2015, 273, 286–295. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-based biorefineries for sustainable resource recovery from wastewater. J. Water Proc. Eng. 2020, 40, 101747. [Google Scholar] [CrossRef]
- Kumar, R.K.; Agrawal, K.; Mehariya, S.; Verma, P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: An emerging and foreseeable sustainable approach. Environ. Sci. Pollut. Res. 2021, 67, 61905–61937. [Google Scholar]
- Singh, D.; Goswami, R.K.; Agrawal, K.; Chaturverdi, V.; Verma, P. Bio-inspired remediation of wastewater: A contemporary approach for environmental clean-up. Curr. Res. Green Sustain. Chem. 2022, 5, 100261. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.K.; Agrawal, K.; Verma, P. Phycoremediation of nitrogen and phosphate from wastewater using Picochlorum sp.: A tenable approach. J. Basic Microbiol. 2021, 62, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Choudri, B.S.; Charabi, Y. Health effects associated with wastewater treatment, reuse, and disposal. Water Environ. Res. 2019, 91, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.A.; Soares, A. Hospido, Monitoring and diagnosis of energy consumption in wastewater treatment plants. a state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef]
- Neoh, C.H.; Noor, Z.Z.; Mutamim, N.S.A.; Lim, C.K. Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J. 2016, 283, 582–594. [Google Scholar] [CrossRef]
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment. Sci. Rep. 2016, 6, 25054. [Google Scholar] [CrossRef]
- Ngo, H.H.; Guo, W.; Surampalli, R.Y.; Zhang, T.C. Green Technologies for Sustainable Water Management; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Nascimento, A.L.; Souza, A.J.; Andrade, P.A.M.; Andreote, F.D.; Coscione, A.R.; Oliveira, F.C.; Regitano, J.B. Sewage sludge microbial structures and relations to their sources, treatments, and chemical attributes. Front. Microbiol. 2018, 9, 1462. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Verma, P. Microalgae-based biofuel-integrated biorefinery approach as sustainable feedstock for resolving energy crisis. In Bioenergy Research: Commercial Opportunities & Challenges; Springer: Singapore, 2021; pp. 267–293. [Google Scholar]
- Nguyen, L.N.; Aditya, L.; Vu, H.P.; Johir, A.H.; Bennari, L.; Ralph, P.; Hoang, N.B.; Zdarta, J.; Nghiem, L.D. Nutrient removal by algae-based wastewater treatment. Curr. Pollut. Rep. 2022, 8, 369–383. [Google Scholar] [CrossRef]
- Qadir, G. Yeast a magical microorganism in the wastewater treatment. J. Pharmacogn. Phytochem. 2019, 8, 1498–1500. [Google Scholar]
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.M.; Afzal, M. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard Mater. 2018, 349, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 2018, 217, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Dwivedi, S.K. Multimetal tolerant fungus Aspergillus flavus CR500 with remarkable stress response, simultaneous multiple metal/loid removal ability and bioremediation potential of wastewater. Environ. Technol. Innovat. 2020, 20, 101075. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, S.K. Ecotoxicology and environmental safety hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater. Ecotoxicol. Environ. Saf. 2019, 185, 109734. [Google Scholar] [CrossRef]
- Syed, T.; Batool, U.; Aslam, M.; Noreen, Z.; Farheen, I.; Gondal, A.; Muhammad, S.; Shah, U.; Pucciarelli, S. Bioremediation and decontamination potential of flagellate Poteriospumella sp. Ann. Finance 2019, 23, 142–153. [Google Scholar] [CrossRef]
- Kamika, I.; Momba, M.N.B. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol. 2013, 13, 28. [Google Scholar] [CrossRef]
- Muradov, N.; Taha, M.; Miranda, A.F.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.S.; Mouradov, A. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnol. Biofuels 2015, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Das, C.; Ramaiah, N.; Pereira, E.; Naseera, K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella. Int. J. Phytoremediat. 2018, 6514, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K.; Al-Mutairi, K.A. Effective Microorganisms as Halal-Based Sources for Biofertilizer Production and Some SocioEconomic Insights: A Review. Foods 2023, 12, 1702. [Google Scholar] [CrossRef] [PubMed]
- Safwat, S.M.; Matta, M.E. Environmental applications of Effective Microorganisms: A review of current knowledge and recommendations for future directions. J. Eng. Appl. Sci. 2021, 68, 48. [Google Scholar] [CrossRef]
- Talaat, N.B. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci. Horticult. 2019, 250, 254–265. [Google Scholar] [CrossRef]
- Gumogda, P.A. Modified mudball-effective microorganism as laundry wastewater cleansing agent. Psychol. Educ. 2022, 5, 850–861. [Google Scholar]
- Michalska, K.; Gesek, M.; Sokół, R.; Murawska, D.; Mikiewicz, M.; Chłodowska, A. Effective microorganisms (EM) improve internal organ morphology, intestinal morphometry and serum biochemical activity in Japanese quails under clostridium perfringens challenge. Molecules 2021, 26, 2786. [Google Scholar] [CrossRef]
- Yalçın, Z.G.; Dağ, M.; Aydoğmuş, E. Wastewater treatment using active microorganisms and evaluation of results. Int. J. Adv. Nat. Sci. Eng. Res. 2023, 7, 55–61. [Google Scholar] [CrossRef]
- Ali, M.N.; Youssef, T.F.; Aly, M.M.; Abuzaid, A.G. Application of effective microorganisms technology on dairy wastewater treatment for irrigation purposes. J. Degrad. Min. Lands Manag. 2021, 8, 2917–2923. [Google Scholar] [CrossRef]
- Mahilarasi, A.; Jaianand, K.; Rameshkumar, K.; Balaji, P.; Veeramanikandan, V. Formulation of effective microbial consortium and its application for industrial wastewater treatment. J. Drug Deliv. Therap. 2019, 9, 111–117. [Google Scholar] [CrossRef]
- Ghosh, S.; Rusyn, I.; Dmytruk, O.V.; Dmytruk, K.V.; Onyeaka, H.; Gryzenhout, M.; Gafforov, Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front. Bioeng. Biotechnol. 2023, 11, 1106973. [Google Scholar] [CrossRef]
- Kavitha, M.; Vani, G.S. Formulation of Effective Microorganism [EM] to Analyse its Impact on Municipal Wastewater Management. Ecol. Environ. Conserv. 2023, 29, 239–242. [Google Scholar] [CrossRef]
- Dipali, P.; Priyanka, G.; Pooja, G.; Saddam, I.; Poonam, G.; Amol, B. Domestic waste water treatment using effective microorganism (em) technology. Int. J. Res. Eng. Sci. Manag. 2020, 3, 158–162. [Google Scholar]
- Velmurugan, L.; Pandian, K.D. Recycling of wet grinding industry effluent using effective microorganisms™ (EM). Heliyon 2023, 9, e13266. [Google Scholar] [CrossRef]
- Wen Low, C.; Zhi Ling, R.L.; Teo, S.S. Effective microorganisms in producing eco-enzyme from food waste for wastewater treatment. Appl. Microbiol. Theory Technol. 2021, 2, 28–36. [Google Scholar] [CrossRef]
- Joshi, H.; Somduttand; Choudhary, P.; Mundra, S.L. Role of effective microorganisms (EM) in sustainable agriculture. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 172–181. [Google Scholar] [CrossRef]
- Dos Santos, L.F.; Lana, R.P.; Da silva, M.C.S.; Veloso, T.G.R.; Kasuya, M.C.M.; Ribeiro, K.G. Effective microorganisms inoculant: Diversity and effect on the germination of palisade grass seeds. An. Acad. Bras. Cienc. 2020, 92, e20180426. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalik, A.; Abd El-Mageed, T.A.; Mohamed, I.A.A.; Semida, W.M.; Al-Elwany, O.A.A.I.; Ibrahim, I.M.; Hemida, K.A.; El-Saadony, M.T.; AbuQamar, S.F.; El-Tarabily, K.A.; et al. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper (Capsicum annum L.) plants. Front. Plant Sci. 2023, 13, 1079260. [Google Scholar] [CrossRef] [PubMed]
Microorganisms Group | GTR | Wastewater | References | |
---|---|---|---|---|
Bacteria | Acinetobacter junii NT-15 | Plant–bacteria interaction | Textile | [17] |
Bacillus subtilis LORI66 | Plant–bacteria interaction | Oil | [18] | |
Klebsiella sp. LCRI87 | Plant–bacteria interaction | Oil | [19] | |
Fungi | Aspergillus flvaus CR500 | Plant–fungus interaction | Tannery | [20] |
Trichoderma sp. | Data are not available | Electroplating | [21] | |
Protozoa | Poteriospumella sp. | Bacteria–protozoa interaction | Industrial | [22] |
Peranema sp. | Bacteria–protozoa interaction | Industrial | [23] | |
Algae | Tetraselmis suecica | Fungus–algae interaction | Swine | [24] |
Chlorella sp. | Bacteria–algae interaction | Tannery | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelebi, H.; Bahadır, T.; Şimşek, İ.; Tulun, Ş. Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses. Biol. Life Sci. Forum 2024, 31, 4. https://doi.org/10.3390/ECM2023-16457
Çelebi H, Bahadır T, Şimşek İ, Tulun Ş. Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses. Biology and Life Sciences Forum. 2024; 31(1):4. https://doi.org/10.3390/ECM2023-16457
Chicago/Turabian StyleÇelebi, Hakan, Tolga Bahadır, İsmail Şimşek, and Şevket Tulun. 2024. "Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses" Biology and Life Sciences Forum 31, no. 1: 4. https://doi.org/10.3390/ECM2023-16457
APA StyleÇelebi, H., Bahadır, T., Şimşek, İ., & Tulun, Ş. (2024). Innovative Microorganisms in Environmental Cleanup: Effective Microorganism-Based Bioprocesses. Biology and Life Sciences Forum, 31(1), 4. https://doi.org/10.3390/ECM2023-16457