Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future †
Abstract
:1. Introduction
2. Materials and Method
3. Results and Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO The State of Food Security and Nutrition in the World. Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017. [Google Scholar]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Roopaei, M.; Rad, P.; Choo, K.K.R. Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 2017, 4, 10–15. [Google Scholar] [CrossRef]
- Namani, S.; Gonen, B. Smart agriculture based on IoT and cloud computing. In Proceedings of the 2020 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; IEEE: Toulouse, France, 2020; pp. 553–556. [Google Scholar]
- Bruulsema, T. 4R Phosphorus Management Practices for Major Commodity Crops of North America; International Plant Nutrition Institute: Norcross, GA, USA, 2017; p. 12. [Google Scholar]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Cohen, P.; Feigenbaum, E. Strips and abstrips. In Chapter 15B of the Handbook of Artificial Intelligence; W. Kaufman Publishing Co.: Los Altos, CA, USA, 1982; Volume 3. [Google Scholar]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Attaran, M. The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 5977–5993. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, R.; Hanana, M. Artificial intelligence to improve the food and agriculture sector. J. Food Qual. 2021, 2021, 5584754. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Nawaz, A.N.; Nadaf, H.A.; Kareem, A.M.; Nagaraja, H. Application of artificial intelligence in agriculture-pros and cons. Vigyan Varta 2020, 1, 22–25. [Google Scholar]
- Sarkar, M.R.; Masud, S.R.; Hossen, M.I.; Goh, M. A Comprehensive Study on the Emerging Effect of Artificial Intelligence in Agriculture Automation. In Proceedings of the 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), Selangor, Malaysia, 12 May 2022; pp. 419–424. [Google Scholar] [CrossRef]
- Visscher, G.J. Humidity and moisture measurement. In Measurement, Instrumentation, and Sensors Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 80–81. ISBN 9781315217444. [Google Scholar]
Utilization | Algorithm | Findings |
---|---|---|
Monitoring plant growth indicators | Machine learning, threshold segmentation, and CIE | Obtained a really nice outcome |
Monitoring grape growth | Computer vision | Accurate barrier and grape bunch identification were made |
Nitrogen concentration in rice through diagnosis | MATLAB | Process of changing blades was quantified |
Observation of the wheat’s heading date | Computer vision | Compared to other methods, the method’s absolute inaccuracy is 10.14 percent days |
Observation of paddy growth | Remote sensing | Achieved a good result |
Sectors | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|
Artificial intelligence | 7 | 152 | 239 | 412 | 379 | 953 | 328 | 217 |
Digital media | 0 | 0 | 0 | 61 | 52 | 26 | 58 | 30 |
Internet of things | 0 | 0 | 7 | 87 | 55 | 45 | 105 | 91 |
Robotics | 0 | 2 | 16 | 107 | 125 | 84 | 172 | 2 |
E-commerce | 0 | 0 | 11 | 14 | 82 | 95 | 398 | 68 |
Advanced materials | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 12 |
Big data | 7 | 2 | 61 | 222 | 396 | 189 | 478 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Rubab, F.; Hussain, M.; Shah, S.A.R. Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future. Biol. Life Sci. Forum 2024, 30, 11. https://doi.org/10.3390/IOCAG2023-15875
Bilal M, Rubab F, Hussain M, Shah SAR. Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future. Biology and Life Sciences Forum. 2024; 30(1):11. https://doi.org/10.3390/IOCAG2023-15875
Chicago/Turabian StyleBilal, Muhammad, Farva Rubab, Mubashir Hussain, and Syyed Adnan Raheel Shah. 2024. "Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future" Biology and Life Sciences Forum 30, no. 1: 11. https://doi.org/10.3390/IOCAG2023-15875
APA StyleBilal, M., Rubab, F., Hussain, M., & Shah, S. A. R. (2024). Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future. Biology and Life Sciences Forum, 30(1), 11. https://doi.org/10.3390/IOCAG2023-15875