Innovation with Lagoon Sediments for Soil Conservation and Sustainable Intensification in the Ecuadorian Andes †
Abstract
:1. Introduction
2. Materials and Methods
Evaluation of Phenological Variables
3. Results and Discussion
3.1. Days to Germination and Days to Harvest
3.2. Stem Height
3.3. Yield
3.4. Soil Evaluation
3.5. Economic Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brissio, P.A.; Savini, M. Evaluación Preliminar del Estado de Contaminación en el Suelo de la Provincia de Neuquen Donde se Efectuaron Actividades de Explotación Hidrográfica. Bachelor’s Thesis, Universidad Nacional de Comahue, Neuquén, Argentina, 2005. [Google Scholar]
- Suquilanda, M.B. El Deterioro de los Suelos en el Ecuador y la Producción Agrícola. In XI Congreso Ecuatoriano de la Ciencia del Suelo, Quito, Ecuador, 29–31 October 2008; Universidad Central del Ecuador: Quito, Ecuador, 2008. [Google Scholar]
- Sinaproy. Sustrato Orgánico Mineral; SINAPROY: Quito, Ecuador, 2015. [Google Scholar]
- Estrada, E.I.; Gracía, A.; Cardozo, I.; Gutíerrez, A.; Baena, D. Sánchez S y Vallejo, A. Cultivo de Cilantro. Variedad UNAPAL Precoso; Universidad Nacional de Colombia: Bogotá, Colombia, 2004. [Google Scholar]
- Instituto de Investigaciones Agropecuarias (INIA). Centro de Suelos y Nutrición Vegetal. Análisis de suelo; La Pintana: Santiago de Chile, Chile, 2012; Volume 1, pp. 1–5. [Google Scholar]
- Mendoza-Hernández, D.; Fornes, F.; Belda, R.M. Compost and vermicompost of horticultural wasted as substrates for cutting rooting and growth of rosemary. Sci. Hortic. 2014, 178, 192–202. [Google Scholar] [CrossRef]
- Hernández, J. Crecimiento y desarrollo del Cilantro Coriandrum sativum L. por efecto del Fotoperiodo y la Temperatura y su Control con Fitoreguladores. Ph.D. Thesis, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Mexico, 2003. [Google Scholar]
- Carberry, A. How to Measure Growth Rate of Plants. 2019. Available online: https://www.wikihow.com/Measure-Growth-Rate-of-Plants (accessed on 3 May 2021).
- González, E. Cilantro (Coriandrum sativum L.) un Cultivo Ancestral con Potencial Sub-Utilizado, 9th ed.; Inifap: Mexico City, Mexico, 2017. [Google Scholar]
- Duwal, A.; Nepal, A.; Luitel, S.; Acharya, S.; Pathak, R.; Poudel, P.R.; Shrestha, J. Evaluation of coriander (Coriadrum sativum L.) varieties for growth and yield parameters. Nepal. J. Agric. Sci. 2019, 18, 36–46. [Google Scholar]
- Ojeda, G. Aplicación en Superficie de Lodos de Depuradora y sus Recursiones Sobre la Erosión y las Propiedades Físicas del suelo. Ph.D. Thesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2005. [Google Scholar]
- Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). La Formulación de Recomendaciones a Partir de Datos Agronómicos: Un Manual Metodológico de Evaluación Económica; CIMMYT: Veracruz, México, 1988. [Google Scholar]
- Jarvis, J.C.; Moore, K.A. Effects of seed source, sediment type, and burial depth on mixed-annual and perennial Zostera marina L. seed germination and seedling establishment. Estuaries Coasts 2015, 38, 964–978. [Google Scholar] [CrossRef]
- Avagyan, A.B. A contribution to global sustainable development: Inclusion of microalgae and their biomass in production and bio cycles. Clean Techn. Environ. Policy 2008, 10, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plantas, 3rd ed.; Academic Press: Londres, Australia, 2011. [Google Scholar]
- Coll, J.B.; Rodrigo, G.N.; García, B.S.; Tamés, R.S. Fisiología Vegetal; Comercial Grupo ANAYA, SA: Madrid, Spain, 2019. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates. Inc.: Sunderland, UK, 2006. [Google Scholar]
- Departamento de Agricultura de los Estados Unidos (USDA). Claves Para la Taxonomía del Suelos. Traducido, 12th ed.; Ortiz, S., Gutiérrez, M., Eds.; USDA: Texcoco, Mexico, 2014; pp. 47–238. [Google Scholar]
- Limón, G. Los lodos de las Plantas de Tratamiento de Aguas Residuales, “Problema o Recurso”; Academia de ingeniería México (en revisión): Mexico City, Mexico, 2013. [Google Scholar]
- Barbaro, L.A.; Karlanian, M.; Mata, D.A. Importancia del pH y la Conductividad Eléctrica (CE) en los Sustratos Para Plantas; Instituto Nacional de Tecnología Agropecuaria (INTA): Buenos Aires, Argentina, 2014; pp. 7–9. [Google Scholar]
Code | Compost (%) | Characteristics |
---|---|---|
T1 | 100 | 100% of the compost and 0% of the soil |
T2 | 75 | 75% of the compost and 25% of the soil |
T3 | 50 | 50% of the compost and 50% of the soil |
T4 | 25 | 25% of the compost and 75% of the soil |
T5 | 0 | 0% of the compost and 100% of the soil (core) |
Code | Compost (%) | Average (Days) | Range |
---|---|---|---|
T4 | 25 | 11 | A |
T1 | 100 | 11 | A |
T5 | 0 | 13 | AB |
T2 | 75 | 13 | AB |
T3 | 50 | 15 | B |
Code | Compost (%) | Average (Days) | Range |
---|---|---|---|
T3 | 50 | 57 | A |
T4 | 25 | 62 | AB |
T2 | 75 | 71 | B |
T5 | 0 | 73 | BC |
T1 | 100 | 76 | C |
Code | Compost (%) | Height | Range | |||||
---|---|---|---|---|---|---|---|---|
Day 20 (cm) | Day 30 (cm) | Day 40 (cm) | Day 50 (cm) | Day 60 (cm) | Day 70 (cm) | |||
T3 | 50 | 7.70 | 8.66 | 19.12 | 32.51 | 46.79 | 51.47 | A |
T4 | 25 | 9.05 | 10.06 | 16.95 | 28.81 | 43.21 | 47.53 | AB |
T2 | 75 | 7.09 | 7.85 | 15.24 | 25.90 | 38.86 | 42.75 | AB |
T5 | 0 | 6.70 | 7.40 | 13.92 | 23.67 | 35.50 | 39.05 | B |
T1 | 100 | 7.00 | 7.70 | 14.06 | 23.90 | 33.99 | 37.39 | B |
Code | Compost (%) | Average Yield (g Plant−1) | Range |
---|---|---|---|
T3 | 50 | 156.94 | A |
T4 | 25 | 145.12 | AB |
T2 | 75 | 130.28 | B |
T1 | 100 | 113.73 | BC |
T5 | 0 | 96.25 | C |
Code | N | P | K | Ca | Mg | S | Fe | B | Zn | Cu | Mn | E.C. 1 mS cm−1 | pH | M.O. (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (meq 100 mL−1) | (mg kg−1) | ||||||||||||
T1 | 57.92 | 28.2 | 1.64 | 60.58 | 7.83 | 132.67 | 155.28 | 0.35 | 2.86 | 13.57 | 31.51 | 1.61 | 7.42 | 7.43 |
T2 | 70.15 | 32.3 | 1.21 | 49.19 | 6.95 | 119.22 | 105.51 | 0.25 | 3.7 | 8.62 | 26.32 | 1 | 7.45 | 5.98 |
T3 | 23.41 | 32.24 | 1.09 | 46.68 | 7.19 | 79.8 | 103.08 | 0.31 | 3.68 | 7.06 | 15.56 | 1.15 | 7.48 | 5.54 |
T4 | 14.71 | 46.97 | 0.87 | 41.76 | 5.97 | 40.13 | 135.82 | 0.33 | 12.6 | 10.23 | 41.41 | 0.92 | 7.34 | 3.19 |
T5 | 48.06 | 43.28 | 0.66 | 41.23 | 5.25 | 19.16 | 121.79 | 0.85 | 3.86 | 11.83 | 27.04 | 0.44 | 7.22 | 2.53 |
Code | N | P | K | Ca | Mg | S | Fe | B | Zn | Cu | Mn | E.C. mS cm−1 | pH | M.O. (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (meq 100 mL−1) | (mg kg−1) | ||||||||||||
T1 | 37.3 | 35.27 | 0.83 | 17.3 | 6.1 | 42.65 | 163.51 | 0.25 | 2.61 | 7.93 | 38.0 | 0.75 | 7.43 | 6.97 |
T2 | 34.7 | 42.03 | 0.83 | 15.9 | 5.66 | 22.03 | 117.07 | 0.34 | 5.45 | 9.67 | 35.3 | 0.71 | 7.39 | 5.07 |
T3 | 27.3 | 47.81 | 0.8 | 12.9 | 5.81 | 12.79 | 155.58 | 0.26 | 6.97 | 10.7 | 29.2 | 0.85 | 7.32 | 3.83 |
T4 | 41 | 58.1 | 0.72 | 11.4 | 5.05 | 27.48 | 173.8 | 0.25 | 5.31 | 7.53 | 39 | 0.74 | 7.3 | 3.77 |
T5 | 26 | 35.43 | 0.59 | 8.43 | 3.81 | 9.71 | 166.18 | 0.41 | 4.92 | 7.85 | 31.7 | 0.38 | 7.17 | 2.05 |
Code | |||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |
Average yield (kg ha−1) | 22,746 | 26,056 | 31,388 | 29,024 | 23,890 |
Adjusted yield (kg ha−1) | 17,059.5 | 19,542 | 23,541 | 21,768 | 14,437.5 |
Price ($ stranded of 295 g−1) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Gross profit from the field (S ha−1) | 14,457.2 | 16,561 | 19,950 | 18,447.46 | 12,235.1 |
Compost cost ($/ha/ciclo) | 6388.67 | 4791.89 | 3192.00 | 1596.78 | 0 |
Production cost ($ ha−1) | 3866.63 | 3866.63 | 3866.63 | 3866.63 | 3866.63 |
Net profit ($ ha−1) | 4201.90 | 7902.50 | 12,891.37 | 12,984.05 | 8368.54 |
Benefit/Cost (B C−1) | 1.41 | 1.91 | 2.83 | 3.38 | 3.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tituaña, A.; Heredia-R., M.; Torres, B.; Valencia, L.; Vanegas, J.; Cordero-Ahiman, O.V.; Toulkeridis, T.; Puerres, D.; Diaz-Ambrona, C.G.H.; Cayambe, J. Innovation with Lagoon Sediments for Soil Conservation and Sustainable Intensification in the Ecuadorian Andes. Biol. Life Sci. Forum 2021, 3, 9. https://doi.org/10.3390/IECAG2021-10026
Tituaña A, Heredia-R. M, Torres B, Valencia L, Vanegas J, Cordero-Ahiman OV, Toulkeridis T, Puerres D, Diaz-Ambrona CGH, Cayambe J. Innovation with Lagoon Sediments for Soil Conservation and Sustainable Intensification in the Ecuadorian Andes. Biology and Life Sciences Forum. 2021; 3(1):9. https://doi.org/10.3390/IECAG2021-10026
Chicago/Turabian StyleTituaña, Alexander, Marco Heredia-R., Bolier Torres, Luis Valencia, Jorge Vanegas, Otilia Vanessa Cordero-Ahiman, Theofilos Toulkeridis, Diego Puerres, Carlos G. H. Diaz-Ambrona, and Jhenny Cayambe. 2021. "Innovation with Lagoon Sediments for Soil Conservation and Sustainable Intensification in the Ecuadorian Andes" Biology and Life Sciences Forum 3, no. 1: 9. https://doi.org/10.3390/IECAG2021-10026
APA StyleTituaña, A., Heredia-R., M., Torres, B., Valencia, L., Vanegas, J., Cordero-Ahiman, O. V., Toulkeridis, T., Puerres, D., Diaz-Ambrona, C. G. H., & Cayambe, J. (2021). Innovation with Lagoon Sediments for Soil Conservation and Sustainable Intensification in the Ecuadorian Andes. Biology and Life Sciences Forum, 3(1), 9. https://doi.org/10.3390/IECAG2021-10026