Available P Enhancement in Andisols under Pasture and Rock Phosphate Amended with Poultry Manure †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Poultry Manure
Chemical Characterization
2.2. Soil Sampling
2.3. Incubation Assays
2.3.1. Effect of Poultry Manure on Soil P availability
2.3.2. Effect of Poultry Manure on Soil P Enzyme Activity
2.3.3. Effect of Poultry Manure on P Availability from Rock Phosphate
2.4. Statistical Analyses
3. Results
3.1. Available P in an Andisol Amended with Poultry Manure
3.2. Acid Phosphatase Activity in Andisols Amended with Poultry Manure
3.3. Available P in the Mixture of Poultry Manure and Rock Phosphate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Demanet, R.; Mora, M.D.L.L.; Herrera, M.Á.; Miranda, H.; Barea, J.M. Seasonal variation of the productivity and quality of permanent pastures in Adisols of temperate regions. J. Soil Sci. Plant Nutr. 2015, 15, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Borie, F.; Aguilera, P.; Castillo, C.; Valentine, A.; Seguel, A.; Barea, J.M.; Cornejo, P. Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition. J. Soil Sci. Plant Nutr. 2019, 19, 390–401. [Google Scholar] [CrossRef]
- Redel, Y.; Cartes, P.; Demanet, R.; Velásquez, G.; Poblete-Grant, P.; Bol, R.; Mora, M.L. Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. J. Soil Sci. Plant Nutr. 2016, 16, 490–506. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, G.; Calabi-Floody, M.; Poblete-Grant, P.; Rumpel, C.; Demanet, R.; Condron, L.; Mora, M.L. Fertilizer effects on phosphorus fractions and organic matter in andisols. J. Soil Sci. Plant Nutr. 2016, 16, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Dörner, J.; Zúñiga, F.; López, I. Short-term effects of different pasture improvement treatments on the physical quality of an andisol. J. Soil Sci. Plant Nutr. 2013, 13, 381–399. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Crème, A.; Ngo, P.; Velásquez, G.; Mora, M.; Chabbi, A. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Plant Nutr. 2015, 15, 353–371. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.K.; Musa, N.; Manzoor, M. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 2015, 12, 4607–4619. [Google Scholar] [CrossRef] [Green Version]
- Poblete-Grant, P.; Biron, P.; Bariac, T.; Cartes, P.; Mora, M.L.; Rumpel, C. Synergistic and antagonistic effects of poultry manure and phosphate rock on soil P availability, ryegrass production, and P uptake. Agronomy 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Sharif, M. Solubility Enhancement of Phosphorus from Rock Phosphate through Composting with Poultry Litter. Sarhad J. Agric. 2012, 28, 415–420. [Google Scholar]
- Mahimairaja, S.; Bolan, N.S.; Hedley, M.J. Dissolution of phosphate rock during the composting of poultry manure: An incubation experiment. Fertil. Res. 1994, 40, 93–104. [Google Scholar] [CrossRef]
- Dikinya, O.; Mufwanzala, N. Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol. Fertil. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Poblete-Grant, P.; Suazo-Hernández, J.; Condron, L.; Rumpel, C.; Demanet, R.; Malone, S.L.; Mora, M.L. Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile. Geoderma Reg. 2020, 21, e00271. [Google Scholar] [CrossRef]
- Blair, R.M.; Savin, M.C.; Chen, P. Phosphatase activities and available nutrients in soil receiving pelletized poultry litter. Soil Sci. 2014, 179, 182–189. [Google Scholar] [CrossRef]
- Starnes, D.L.; Padmanabhan, P.; Sahi, S.V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum L.). Plant Physiol. Biochem. 2008, 46, 580–589. [Google Scholar] [CrossRef]
- Sadzawka, A.R.; Carrasco, M.A.; Grez, R.Z.; Mora, M.D.L.L. Métodos de Análisis de Compost; de Serie, A., Ed.; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2005. [Google Scholar]
- Dick, W.A.; Tabatabai, M.A. Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. J. Environ. Qual. 1977, 6, 82–85. [Google Scholar] [CrossRef]
- Murphy, B.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Rubio, R.; Moraga, E.; Borie, F. Acid phosphatase activity and vesicular-arbuscular mycorrhizal infection associated with roots of four wheat cultivars. J. Soil Sc. Plant Nutr. 1990, 13, 585–598. [Google Scholar] [CrossRef]
- Rojas, C. Comparison of Chilean natural phosphatic minerals. J. Soil Sc. Plant Nutr. 2006, 2, 28–37. [Google Scholar] [CrossRef] [Green Version]
Dry Matter | pH | Total OC | Total N | Total P | |
---|---|---|---|---|---|
% | (H2O) | (g kg−1) | |||
Poultry manure | 56.1 | 8.77 | 267.8 | 37.1 | 25.0 |
Soil | Soil Order | Soil Family | Bulk Density (g cm−3) | pH (H2O) | Available P (mg kg−1) | Total OC (g kg−1) | Total N (g kg−1) |
---|---|---|---|---|---|---|---|
BAR | Andisol | Typic Hapludand | 0.85 | 5.7 | 10.0 | 87.0 | 2.1 |
CUN | Andisol | Acrudoxic Hapludand | 1.05 | 6.0 | 11.0 | 32.9 | 8.2 |
VILL1 | Andisol | Acrudoxic Fulvudands | 0.65 | 5.2 | 6.1 | 130.3 | 7.7 |
VILL2 | Andisol | Acrudoxic Fulvudands | 0.65 | 5.2 | 6.9 | 130.3 | 6.6 |
LLA | Andisol | Typic Durundands | 0.84 | 6.1 | 2.8 | 82.7 | 5.3 |
pH | Available P | CaO | MgO | CaCO3 | |
---|---|---|---|---|---|
H2O | g kg−1 | % | |||
Rock phosphate | 8.72 | 82.8 | 30 | 1.2 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poblete-Grant, P.; Demanet, R.; de La Luz Mora, M.; Rumpel, C. Available P Enhancement in Andisols under Pasture and Rock Phosphate Amended with Poultry Manure. Biol. Life Sci. Forum 2021, 3, 62. https://doi.org/10.3390/IECAG2021-09676
Poblete-Grant P, Demanet R, de La Luz Mora M, Rumpel C. Available P Enhancement in Andisols under Pasture and Rock Phosphate Amended with Poultry Manure. Biology and Life Sciences Forum. 2021; 3(1):62. https://doi.org/10.3390/IECAG2021-09676
Chicago/Turabian StylePoblete-Grant, Patricia, Rolando Demanet, María de La Luz Mora, and Cornelia Rumpel. 2021. "Available P Enhancement in Andisols under Pasture and Rock Phosphate Amended with Poultry Manure" Biology and Life Sciences Forum 3, no. 1: 62. https://doi.org/10.3390/IECAG2021-09676
APA StylePoblete-Grant, P., Demanet, R., de La Luz Mora, M., & Rumpel, C. (2021). Available P Enhancement in Andisols under Pasture and Rock Phosphate Amended with Poultry Manure. Biology and Life Sciences Forum, 3(1), 62. https://doi.org/10.3390/IECAG2021-09676